
Vol.:(0123456789)1 3

Multimedia Systems 
https://doi.org/10.1007/s00530-022-00944-4

SPECIAL ISSUE ARTICLE

Asymmetric exponential loss function for crack segmentation

Fan Liu1,2,3  · Junfeng Wang1,3 · Delong Chen1,3 · Chunmei Shen1,3 · Feng Xu1,3

Received: 9 January 2022 / Accepted: 11 April 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Real-time and effective crack detection on public facilities is significant in maintaining the facilities even saving lives. 
Recent methods mostly explore the impact of model structures but neglect the impact from the loss functions. In this paper, 
we concentrate on analyzing the loss functions during the training process of crack segmentation tasks and propose an 
Asymmetric Exponential Loss Function (AELF) that addresses two key challenges, sample biases and data set biases. For 
the sample biases, AELF adopts an exponential loss function, thus can assign higher weights to the ‘hard’ samples, making 
the models concentrate on the crack details. For the data set biases, AELF leverages asymmetric protocol to balance the 
inevitable False Positive and False Negative samples. We conduct extensive experiments on three data sets of road, dam, 
and wall collected from real scenes. The impressive performances reveal the effectiveness of our proposed Asymmetric 
Exponential Loss Function.

Keywords Crack detection · Semantic segmentation

1 Introduction

Under continuous heavy pressure, cracks may appear on the 
structures, e.g., roads, bridges, and dams. In most cases, the 
appearance of cracks implies material fatigue and poten-
tial danger. Detecting and localizing the cracks in these 
structures in time is critical for maintaining public safety 
and avoiding economical losses. However, the cracks are 
always very small compared with the entire structure. This 
makes manual examination extremely costly and inefficient. 
Therefore, efficient and reliable crack segmentation methods 
are required to make early warnings. A formal procedure 
composed of collecting data with sensors installed on cars 
or unmanned aerial vehicles, analyzing them automatically, 
and alerting if cracks are detected, can severely reduce the 
disasters caused by cracks. Over years, researchers in the 

computer vision domain have made many efforts to develop 
efficient image processing techniques and improve the per-
formance of crack detection [21, 37, 63]. The major diffi-
culty of crack detection is caused by the presence of noise, 
e.g., textural patterns, road lanes, shadows, etc. Researchers 
have applied various image processing techniques to solve 
this issue, including multi-scale filtering [19, 59], histogram 
equalization [9, 10], adaptive thresholding [17, 26], wavelet 
transform [28, 30], anisotropy measurement [38, 57] and 
Canny operator [46, 56], etc. However, these crack detec-
tion methods focus on the traditional image processing 
techniques, hardly analyze images in a semantic level, thus 
usually failing to handle the complex noises.

In recent years, due to the strong learning ability, deep 
learning models [12–15, 22, 24, 29, 33–35, 43, 50, 51] has 
shown great success in various artificial intelligence applica-
tions. Convolutional Neural Networks (CNN) [27] have out-
performed traditional methods by a large margin in a series 
of computer vision tasks, including image classification 
[11], object detection [66], and semantic segmentation [36]. 
Some of these methods that were originally designed for 
general semantic segmentation tasks can be directly applied 
to perform crack detection. For example, Fully Convolu-
tional Network (FCN)-based [16, 60], SegNet-based [45], 
Mask-RCNN-based [4], YOLO-based [39], and U-Net-
based [53] crack detection models have been validated to 
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be effective. Despite directly applying existing models to 
perform crack detection, researchers have also attempted to 
design adaptive modifications, such as from the perspective 
of receptive field [8, 31, 54, 58], integrating Bayesian fusion 
model [18], developing multi-task learning scheme [1, 41, 
49, 52, 62, 65], etc.

Deep learning learns knowledge from data under the 
guidance of loss functions. Hence, the choice of the loss 
function impacts the effectiveness of the models. Most exist-
ing methods utilize the classic loss functions in the process 
of use, but there are no further explorations on how the loss 
functions work. Intuitively, the loss functions should fit the 
distribution of the training data, and fix the biases and noises 
of them, thus can capture the perfect model. However, there 
are two obvious observations in the recent training process. 
First, from the data point of view, some data are easier to 
be understood by the model, while others are difficult to 
understand, but most of the existing loss functions are given 
the same weight; second, from the data set point of view, 
the characteristics of different data sets themselves Differ-
ent, some data set cracks are easy to be detected, and some 
are easily misjudged by noise, but most of the existing loss 
functions do not consider the characteristics of the data set. 
Therefore, we term these observations as ‘sample biases’ 
and ‘data set biases’, and propose an Asymmetric Exponen-
tial Loss Function (AELF) to address these biases. For the 
sample biases, AELF adopts an exponential loss function, 
thus can assign higher weights to the ‘hard’ samples, mak-
ing the models concentrate on the crack details. For the data 
set biases, AELF leverages asymmetric protocol to balance 
the inevitable False Positive and False Negative samples. 
We conduct extensive experiments on three data sets of 
road, dam, and wall collected from real scenes. The impres-
sive performances reveal the effectiveness of our proposed 
Asymmetric Exponential Loss Function.

Summarily, the contributions of this paper are: 

1. We point out the existence of sample biases during the 
training process and propose an exponential loss func-
tion to make the models concentrate on the hard details.

2. We note the different characteristics of different data 
sets and propose an Asymmetric Exponential Loss Func-
tion (AELF) to balance the inevitable False Positive and 
False Negative samples.

3. We conduct extensive experiments on five data sets. 
The results demonstrate the superiority of the proposed 
AELF loss function.

The rest of this paper is organized as follows. Section 2 
reviews related work. Our proposed AELF loss function is 
described in Sect. 3. Comparative experiments and ablation 
studies are presented in Sect. 4. We finally conclude our 
paper in Sect. 5.

2  Related works

Zakeri et al. [63], Hsieh et al. [21], and Munawar et al. 
[37] have presented comprehensive reviews summarizing 
different approaches for crack detection. In general, crack 
detection can be done in three different ways: (1) patch 
classification, (2) object detection, and (3) image segmen-
tation. Patch classification is the most straightforward way 
to apply a CNN to crack detection. This type of method 
first crops the camera captured images into many small 
patches, then feeds these patches to CNN and gets binary 
predictions indicating whether there is a crack instance 
within the patch. For this type of method, one common 
issue is that the contextual information between neigh-
bourhood patches is ignored. Moreover, fixed patch size 
cannot handle multi-scale inputs. It is hard to decide a 
unified patch size when the input images are captured from 
different distances. Object detection-based crack detection 
can solve this problem, for example, using Feature Pyra-
mid Network (FPN). However, it cannot provide quantified 
information on crack (e.g., the width of a crack instance). 
Comparatively, image segmentation [2, 20, 32, 40, 48, 55, 
64]-based crack detection can not only utilize both local 
and global contextual information but also provide pixel-
wise localization of the crack, which would be useful for 
further analysis.

Early crack detection methods are based on traditional 
image processing methods [9, 10, 17, 19, 26, 28, 30, 38, 
46, 56, 57, 59], but their learning abilities are limited. 
With the rise of deep learning, the research community 
began to pay more attention to deep learning-based fea-
ture extraction approaches. Researchers successfully 
implemented AlexNet-based [25], FCN-based [16, 60], 
SegNet-based [45], Mask-RCNN-based [4], YOLO-
based [39], and U-Net-based [53] crack detection mod-
els. It is worth noting that crack detection has its unique 
characteristics against generic computer vision tasks, so 
adaptive modifications on these deep models can further 
improve crack detection performances. Wang et al. [54] 
used dilated convolutions to enlarge the receptive field and 
utilize more contextual information. Similarly, Yang et al. 
[58] proposed Feature Pyramid and Hierarchical Boosting 
Network (FPHBN) to integrate semantic information of 
multi-level features. Liu et al. [31] proposed a DeepCrack 
model that can aggregate multi-scale and multi-level fea-
tures, and Asadi et al. [3] found that assembling multiple 
branches of the DeepCrack model can further improve the 
performance.

Another line of research is combining multiple learn-
ing tasks to improve the crack detection models. Qu et al. 
[41] used an image classification task to improve the 
feature learned by CNN. Cha et al. [8] and Yao et al. 
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[61] detected cracks in a patch classification manner. 
Based on the patch classification framework, Ali et al. 
[54] added a sliding window-based crack localizing mod-
ule after the classifier to provide additional information 
about the crack size, Yusef et al. [62] further combined 
a classification module to tell the type of the crack 
(transverse or longitudinal). Zhang et al. [65] proposed 
an APLCNet, which integrates classification, semantic 
segmentation, and instance segmentation into a single 
model.

3  Methods

3.1  Problem formulation

Suppose we have a data set D = {(Xi, Yi)}
N
i=1

 with N sam-
ples, where Xi and Yi are the ith input image and the 
corresponding binary crack annotation. For each pixel 
of Yi , zero represents background, while one represents 
crack instance. For visualization purpose, in this paper, 
zero and one will be, respectively, plotted as black and 
white in the figures. Our goal is to learn a function f, 
which is a Convolutional Neural Network (CNN), that 
predicts Yi from Xi accurately. In other words, the crack 
detection can be written as Ŷi = f (Xi) and we expect low 
prediction error di = Ŷi − Yi for each i. Going forward, 
the subscripts i are omitted for simplicity. In the follow-
ing, we will first introduce the architectures of the crack 
prediction network in detail (Sect. 3.2), then describe 
the learning objectives and the optimization procedure 
(Sect. 3.3) .

3.2  Crack prediction network

The network structure of this article is shown in Fig. 1, 
which consists of three parts: a U-Net backbone with an 
encoder network E, a decoder network D, and a prediction 
head g. The input image sequentially goes through E, D and 
g. Therefore, the procedure of the crack prediction network 
can be written as

Encoder network The encoder network E has four downsam-
ple stages with convolution and pooling layers, which ana-
lyzes the contextual pixel information in the image to obtain 
the semantic feature. In each stage, the input tensor is first 
go through two 3 × 3 convolutional layers with ReLU acti-
vation. Same padding is applied in convolutional layers to 
preserve the spatial resolution. The output of convolutional 
layers is max-pooled with a kernel size of 2 × 2 , therefore, 
reducing the spatial resolution by a half.

As shown in Fig. 1, the resolution of the input image is 
512 × 512 . The encoder network sequentially downsample 
the inputs into 256 × 256 , 128 × 128 , 64 × 64 , and 32 × 32 . 
At the same time, the channel of feature maps grows from 
64 to 128, 256, 512, and 1024. Let conv(⋅) denote the two 
3 × 3 convolutional layers, and let pool(⋅) represent the max-
pooling layer. The L is the total number of stages (in the case 
of this method, the L is set to 5). The output feature maps of 
each stage of the encoder E can be formulated as follows:

Decoder network The decoder network D consists of four 
upsample stages. It recovers the same resolution of the given 

(1)Ŷ = f (X) = g(D(E(X)))

(2)Xl
E
=

{

conv(X), l = 1

conv(pool(Xl−1
en

)), l = 2,… ,L

Fig. 1  Structure of crack predic-
tion network
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input image. In each stage, a skip connection is built with 
the corresponding stage in the encoder. The output tensor of 
the former stage of the decoder are upsampled and concat-
enated along the channel axis with the output tensor of the 
same stage of the encoder. The upsampling is performed by 
doing nearest interpolation. Then, two 3 × 3 convolutions 
with ReLU activation and same padding is applied. Let 
upsample(⋅) denote the upsampling operation and let the 
⊕ represent the concatenate operation, the output tensor of 
each stage of the decoder D can be formulated as follows:

Deep prediction head Conventionally, the prediction head 
g is a single 1 × 1 convolutional layer, as shown in the upper 
of Fig. 2. We argue that such shallow structure is not suffi-
cient to capture complex semantic information in the decoder’s 

(3)

Xl
D
=

{

Xl
E
, l = L

conv(Xl
E
⊕ upsample(Xl+1

D
)), l = 1,… , L − 1.

feature map. As in the bottom of Fig. 2, here we modify the 
shallow prediction head into a deep prediction head structure. 
The deep prediction head consists of four 3 × 3 convolutional 
layers with ReLU activation and an 1 × 1 layer with sigmoid 
activation. The channel of feature maps are, respectively, 64, 
64, 64, 2, and 1. After the sigmoid activation of the final 1 × 1 
convolutional layer, the feature map is converted to a single 
channel 512 × 512 tensor Ŷ in range of (0, 1), which matches 
the crack annotation Y.

The deep prediction head benefits this network, since it 
extracts and fuses richer semantic information from the feature 
maps of the decoder. We will demonstrate this point empiri-
cally in the experiment section. Formally, the prediction head 
g reads the feature maps from the decoder and gives the crack 
prediction Ŷ:

(4)Ŷ = g(X1
D
).

Fig. 2  Detailed structure of shallow (upper) and deep (bottom) prediction heads
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3.3  Asymmetric exponential loss function

In this section, we introduce the learning objective of our 
crack detection model. Recall that our goal is to minimize 
the prediction error:

This goal can be achieved by adopting L1 loss, L2 loss, or 
Binary Cross Entropy (BCE) loss to train the crack detection 
model with back-propagation. However, these methods will 
encounter two key challenges. The first challenge is related 
to the noise in the input images, which is usually caused 
by textural patterns, road lanes, shadows, etc. These pixels 
are very hard to classified correctly, and thus significantly 
increase the difficulty of crack detection. Second, L1 loss, 
L2 loss, and BCE loss treat false positive (false prediction 
of crack instance for background pixels) and false negative 
(false prediction of background for crack instances pixels) 
equally, since they are symmetrical. Importantly, we found 
that the crack detection data set is highly imbalanced. As 
shown in Fig. 3, we compare the data set statistics of our 
constructed data set with other published data sets. We 
count the total number of pixel that is annotated as crack 
instance (one) and background (zero). The number of crack 
instance pixel is normalized to 1.0 across different data sets 
for the ease of comparison. As we can see, three crack detec-
tion data sets are significantly more imbalanced than other 
data sets. For HHU-crack-road data set, the ratio of crack 
instance v.s. background reaches even 1:64. When train a 
crack detection model on such imbalanced data set with tra-
ditional symmetrical losses ( L1 , L2 , or BCE), huge amount 
of background pixels may overwhelm the model, leading to 
overly conservative prediction result.

To address the above two challenges, we first propose a 
novel Exponential loss function LExp . Subsequently, it has 
been improved on this basis, introducing asymmetry, and 
proposes an Asymmetric Exponential (AELF) loss function 
LAELF , which is defined as

(5)d = Ŷ − Y .
To give an intuitive understanding of LExp loss function, we 
plot the loss curve of LExp and its derivative w.r.t a certain 
pixel of the model prediction Ŷ  across different prediction 
error d in Fig. 4, comparing it with traditional L1 , L2 , and 
BCE losses. The derivative of LExp is exponentially grow-
ing with d, while the derivative of L2 loss is linearly grow-
ing, and the derivative of BCE loss grows too late. These 
properties (early growing + exponentially growing) leads 
to the following advantage of the LExp . When the differ-
ence between the prediction and groundtruth is small, e.g., 
d < 0.5 , the model’s prediction can be binarized to the same 
as groundtruth, so the sample can be considered to be an 
easy sample. Relatively smaller volume of gradient is pro-
duced in this case, so that the model can pay more attention 
to the harder samples. When d > 0.5 , the model prediction 
and groundtruth belong to different categories. Under such 
situation, the sample can be considered as hard sample. 
The LExp produces significantly larger value of loss, so that 
the model will pay the most attention to these cases during 
training.

LExp effectively solves the performance deviation 
caused by hard samples, but still cannot solve data set bias 
due to data imbalance. Therefore, in this case, we intro-
duce asymmetry into LExp and propose LAELF . In LAELF , 
we use �1 and �2 to specify the degree of asymmetry. Larger 
�1 and �2 leads to more punishment to false positive, while 
smaller �1 and �2 leads to more punishment to false nega-
tive. We plot the curve of LAELF under different d in Fig. 5. 
For simplicity, we tried �1, �2 ∈ {−0.07, 0.03, 0, 0.03, 0.07} . 
As we can see, positive values of �1 and �2 tilt the curve to 
the left, while negative values tilt the curve to the right.

(6)LExp =

{

exp(𝛼 ∣ d ∣3 +𝛽d2), d > 0

exp(𝛼 ∣ d ∣3 +𝛽d2), d ≤ 0

(7)LAELF =

{

exp(𝛼 ∣ d ∣3 +𝛽d2 + 𝛾1d), d > 0

exp(𝛼 ∣ d ∣3 +𝛽d2 + 𝛾2d), d ≤ 0.

Fig. 3  Imbalance ratio (total 
number of pixels of crack 
instance vs. background) of our 
constructed data sets and other 
public data set
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Since different data set has different ratio of imbalance, it 
is impossible to decide a universal value of �1 and �2 . There-
fore, on different data set, we first perform hyperparameter 
grid search on a separated validation set, and select the best 
�1 and �2 to train the model with training set.

4  Experiments

4.1  Data preparation

To evaluate the performance of our proposed method, 
five data sets (HHU-crack-road, HHU-crack-dam, 

HHU-crack-wall, Weizmann Horses [6] and MUCIC [47]) 
are used for experiment. Among them, HHU-crack-road, 
HHU-crack-dam, HHU-crack-wall are newly collected 
and expert-annotated data sets. Following are their brief 
description: 

1. HHU-crack-dam includes 288 training images and 83 
testing images. As shown in Fig. 6a, the images are 
collected from the daily dam monitoring of high arch 
dams. This data set is very challenging, since there 
are lots of complex noise in the image. The difference 
between cracks and background is small, making it 
more difficult to distinguish. To our best knowledge, 

Fig. 4  Loss curve of LExp and its derivative w.r.t. the model prediction across different d, compared with traditional L1 , L2 , and BCE losses. Here 
in LExp , � is set to 1 and � is set to 0.7

Fig. 5  Loss curve of 
LAELF under differ-
ent d, �1 and �2 . We tried 
�1, �2 ∈ {−0.07, 0.03, 0, 0.03, 0.07}
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HHU-Crack-dam data set is the first crack detection 
data set for dams.

2. HHU-crack-wall includes 124 training images and 43 
testing images. As shown in Fig. 6b, some images have 
less interference and cleaner environments, while some 
others are in noisy background.

3. As shown in Fig. 6c, HHU-crack-road includes 114 
training images and 81 testing images. Though there are 
fewer noise interference, it is more imbalanced com-
pared to HHU-crack-dam and HHU-crack-wall, as previ-
ously discussed in Sect. 3.3.

Except the these crack data sets, we also conducted 
experiments on the other public data sets to evaluate the 
generalization of our proposed method, including Weiz-
mann Horses [6] (237 training images and 91 testing 
images) and MUCIC [47] (706 training images and 291 
testing images).

4.2  Implementation details

We implement our proposed approach with Keras. The 
weights of the U-Net are initialized by He normal. To 
prevent over-fitting, various data augmentations are used, 
including random rotation, shifting shearing, and flipping. 
Nearest interpolation is used for all data augmentations. The 
model is trained for 30 epochs with a batch size of 1 and a 
learning rate of 1e−4. Adam optimizer is used for optimiza-
tion. A NVIDIA GTX 1080 GPU is used to train the model. 
For each experiment, we independently train the model for 
5 times, and report the averaged metric value.

4.3  Evaluation metrics

To evaluate the and compare the performances of differ-
ent approaches, we use the precision ( Pr ), recall ( Re ), and 
F-Measure [7, 57] ( Fscore)as the measurements:

Fig. 6  Annotations of our constructed crack detection data sets

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 F. Liu et al.

1 3

where TP, FP, FN represent the number of true positives, 
false positives, and false negatives, the hyperparameter 
�2 is set to 0.3 following common experiment setting. In 
addition, we also use precision–recall curve to evaluate the 
performance.

4.4  Performance comparison

A total of Five segmentation models (CNN [25], SegNet [5], 
VGG19 [44], CrackSegNet [42], and Semantic FPN [23] 
with a ResNet-50 backbone) are selected for experiments 
in this paper. We first present the comparison results on our 
constructed crack data sets HHU-crack-road, HHU-crack-
dam, HHU-crack-wall, then report the comparison results on 
the public data sets Weizmann Horses [6] and MUCIC [47].

4.4.1  Crack detection

We first show qualitative comparison of crack prediction 
results in Fig. 7. It can be seen that our method is the most 
robust to noise inference. Tables 1, 2, and 3 show the quan-
titative results on HHU-crack-road, HHU-crack-dam, and 

(8)Pr =
TP

TP + FP

(9)Re =
TP

TP + FN

(10)Fscore =
(1 + �2) × Pr × Re

�2 × Pr + Re

HHU-crack-wall. We also show the percentage of improve-
ment on Fscore for comparison. It can be seen that, on HHU-
crack-road, the Fscore of our method reaches the best result 
of 80.72%. The Fscore of UNet, CNN, SegNet, VGG19 and 
CrackSegNet are, respectively, 5.53%, 32.24%, 5.53%, 
14.07%, and 11.11% lower than ours. On HHU-crack-dam 
data set, our method still achieves the best result, with an 

Fig. 7  Crack detection results of different methods on three crack data sets

Table 1  Results of P
r
 , R

e
 and Fscore on HHU-Crack-road data set

Bold value indicates the best performing method

Method P
r

R
e

Fscore Our improvement

CNN 0.4921 0.6051 0.4848 + 32.24%
SegNet 0.7577 0.7445 0.7519 + 5.53%
VGG19 0.6420 0.8347 0.6665 + 14.07%
CrackSegNet 0.6553 0.9079 0.6961 + 11.11%
UNet 0.7479 0.8122 0.7519 + 5.53%
FPN-R50 0.8846 0.5735 0.7862 + 2.6%
Ours 0.8561 0.7207 0.8072 –

Table 2  Results of P
r
 , R

e
 and Fscore on HHU-Crack-dam data set

Bold value indicates the best performing method

Method P
r

R
e

Fscore Our improvement

CNN 0.5799 0.5341 0.5410 + 5.41%
SegNet 0.5253 0.6642 0.5390 + 5.61%
VGG19 0.6097 0.5051 0.5546 + 4.05%
CrackSegNet 0.5387 0.6598 0.5481 + 4.70%
UNet 0.6138 0.5434 0.5739 + 2.12%
FPN-R50 0.5656 0.5141 0.5528 + 7.10%
Ours 0.6971 0.4809 0.5951 –
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Fscore value of 59.51%. Compared to UNet, CNN, SegNet, 
VGG19 and CrackSegNet, there are, respectively, 2.12%, 
5.41%, 5.61%, 4.05% and 4.70% performance improvement 
on Fscore . On the HHU-crack-wall data set, our method out-
performs other methods with an Fscore value of 61.07%. 
Compared to UNet, CNN, SegNet, VGG19, and CrackSeg-
Net, Fscore of ours increases by 7.11%, 8.69%, 8.48%, 4.58% 
and 11.26%, respectively. In sum, the experimental results 
indicate that our method outperforms the other compared 
crack detection methods.

Figure 8 shows the Precision–Recall (PR) curves of the 
all the six methods on the these crack data sets. It can be 
seen that, on HHU-crack-road, our method holds a curve 
most close to the up-right corner, and achieves the best pre-
cision and recall values. On HHU-crack-dam data set, the 
performance of our method is slightly worse than SegNet, 
but still better than other methods. On HHU-crack-wall data 
set, the performance of our method is better than all the 
other methods. The comparative advantage on PR curves 
further demonstrate that the effectiveness of the proposed 
method.

4.4.2  Semantic segmentation

This group of experiments is to verify the performance of 
the proposed method on public data sets. Weizmann Horses 
[6] and MUCIC [47] are selected to test the generaliza-
tion ability of our method. The visualized crack prediction 
results are shown in Fig. 9. On Weizmann Horses data set, 
our method is much robust to noise compared with other 
methods. The output segmentation result is complete and 
accurate. On MUCIC data set, our result is similar to other 
method results but can provide clearer boundaries.

Tables 4 and 5 show the quantitative results. It can be 
seen that, the Fscore of our method has a 8.34% improvement 
compared to that of UNet on Weizmann Horses. Moreover, 
our method increases Fscore by 7.95%, 5.41%, 10.68%, and 
12.57% compared to CNN, SegNet, VGG19, and CrackSeg-
Net, respectively. On MUCIC, our method increases Fscore 
by 0.33%, 9.11%, 6.92%, 5.30%, and 4.73% compared to 

UNet, CNN, SegNet, VGG19, and CrackSegNet, respec-
tively. These results comprehensively show that our method 
can also obtain the best results on public data sets, indicating 
good generalization ability of the proposed method.

Table 3  Results of P
r
 , R

e
 and Fscore on HHU-Crack-wall data set

Bold value indicates the best performing method

Method P
r

R
e

Fscore Our improvement

CNN 0.6329 0.4993 0.5238 + 8.69%
SegNet 0.5296 0.6930 0.5259 + 8.48%
VGG19 0.6205 0.6267 0.5649 + 4.58%
CrackSegNet 0.4746 0.7822 0.4981 + 11.26%
UNet 0.5409 0.7584 0.5396 + 7.11%
FPN-R50 0.6805 0.4599 0.6127 –
Ours 0.6820 0.5987 0.6107 –

(a) HHU-crack-road

(b) HHU-crack-dam

(c) HHU-crack-wall

Fig. 8  PR curves on three crack data sets
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Figure 10 shows the PR curves of this group of experi-
ments. It can be seen that our method is the best along with 
SegNet and CrackSegNet on Horse data set. Our method 
has the best performance compared with other methods on 
MUCIC. Which once again prove the superiority of the pro-
posed method.

4.5  Ablation study

To test the effectiveness of each module in our proposed 
method, ablation experiments are conducted. It can be 
observed from Table 6 that, compared with using shal-
low prediction head (Shallow Head), the Fscore of using 
deep prediction head (Deep Head) has, respectively, 

increased by 1.31%, 0.28%, 2.50%, 5.24%, and 0.05%. 
When the exponential loss is used, the Fscore increased 
by around 1% across all the five data set. However, they 

Fig. 9  Crack detection results of different methods on Weizmann Horses and MUCIC

Table 4  Results of P
r
 , R

e
 and Fscore on Weizmann Horses data set

Bold value indicates the best performing method

Method P
r

R
e

Fscore Our improvement

CNN 0.7899 0.9411 0.8171 + 7.95%
SegNet 0.8128 0.9693 0.8425 + 5.41%
VGG19 0.7586 0.9422 0.7898 + 10.68%
CrackSegNet 0.7266 0.9916 0.7709 + 12.57%
UNet 0.7794 0.9745 0.8132 + 8.34%
Ours 0.8848 0.9449 0.8966 –

Table 5  Results of P
r
 , R

e
 and Fscore on MUCIC data set

Bold value indicates the best performing method

Method P
r

R
e

Fscore Our improvement

CNN 0.8325 0.9572 0.8582 + 9.11%
SegNet 0.8614 0.9487 0.8801 + 6.92%
VGG19 0.8811 0.9504 0.8963 + 5.30%
CrackSegNet 0.8948 0.9275 0.9020 + 4.73%
UNet 0.9372 0.9768 0.9460 + 0.33%
Ours 0.9472 0.9568 0.9493 –

(a) Weizmann Horses

(b) MUCIC

Fig. 10  PR curves on Weizmann Horses and MUCIC data set
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are, respectively, 0.64%, 5.76%, 1.94%, 4.10%, and 0.01% 
lower than our final model (Deep Head + AELF loss). 
The result indicates that the exponential loss can signifi-
cantly improve the model’s ability to identify hard sam-
ples, increase the model robustness against the data set 
bias, and consequently improve the model performance. 
Meanwhile, the asymmetry in the loss function can fur-
ther enhance the model performance by further solving 
the sample bias. We also visualize the grid search process 
of �1 and �2 in Fig. 11. It shows that varying �1 and �2 sig-
nificantly affect model performance. Most trails achieve 
better Fscore than the default setting ( LExp ) or �1 = 0 and 
�2 = 0 , demonstrating the necessity of asymmetry in loss 
function and the effectiveness of hyperparameter grid 
search.

5  Conclusions

This paper proposed an AELF loss function for crack 
detection. The Asym-UNet contains a deep prediction 
head instead of a traditional shallow prediction head. The 
AELF loss encourages the model to focus more on hard 
samples. At the same time, it helps the model to handle 
data imbalance based on its asymmetry. We also presented 
three challenging crack detection data sets, namely, HHU-
Crack-road, HHU-Crack-wall, and HHU-Crack-dam. They 
are more closed to real-world application scenarios. Experi-
ments showed the effectiveness of our method. The per-
formance of our AELF loss approach outperforms various 
comparisons.
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Table 6  Fscore results of ablation 
study

HHU-crack-dam HHU-crack-wall HHU-crack-road Horses MUCIC

Shallow Head 0.5739 0.5396 0.7519 0.8132 0.9460
Deep Head 0.5814 0.5411 0.7707 0.8558 0.9465
Deep Head + Exp loss ( � = 0) 0.5887 0.5531 0.7878 0.8556 0.9492
Deep Head + AELF loss (Final) 0.5951 0.6107 0.8072 0.8966 0.9493
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0 0.5368 0.5126 0.5531 0.5833 0.5524
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0 0.8896 0.8966 0.8556 0.876 0.8526

0.03 0.8216 0.8807 0.8729 0.8849 0.8861

0.07 0.8622 0.8442 0.8904 0.8628 0.8835
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Fig. 11  Results of Fscore using different �1 and �2 . Blue/red represents higher/lower Fscore , respectively (colour figure online)
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