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A B S T R A C T

Driver fatigue is an essential reason for traffic accidents, which poses a severe threat to people’s lives and
property. In this review, we summarize the latest research findings and analyze the developmental trends of
driver fatigue detection. Firstly, we analyze and discuss four types of different fatigue detection technologies
based on driver physiological signals, behavior features, vehicle running features, and information fusion,
respectively. Then, we focus on RGB-D camera and deep learning which are two state-of-the-art solutions in
this field. Finally, we present the work on integration of RGB-D camera and deep learning, where Generative
Adversarial Networks and multi-channel schemes are utilized to enhance the performance. We conducted
experiments to show that the fatigue features extracted by Convolutional Neural Networks are superior to
traditional handcrafted ones while single features cannot guarantee robustness. Moreover, the latent fatigue
features extracted by deep learning methods have been demonstrated to be effective for fatigue detection.
1. Introduction

Nowadays, people are more and more sleep-deprived due to hec-
tic lifestyle in proliferating economies. With increasing amount of
vehicles on the road, driver fatigue becomes a significant cause of
accidents. According to National Highway Traffic Safety Administration
(NHTSA) (Asleep, 2020), driver fatigue has been one of the major
threats to life safety and the economy. The American Automobile
Association also noted that 21% of fatal crashes result from driver
fatigue (Tefft, 2012). Therefore, driver fatigue detection has become
a vital task for preventing traffic accidents.

In the past several decades, numerous fatigue detection methods
and technologies have been developed. These methods have been cov-
ered by survey papers from different perspectives, for example, psy-
chology and causing of driver fatigue (Lal and Craig, 2001a), measure-
ments of physiological signals (Sanjaya et al., 2016), fatigue detection
based on driver’s behavior or performance (Wang et al., 2006), and
a combination of all these perspectives (Shi et al., 2017; Stork et al.,
2015). Sahayadhas et al. (2012) reviewed and discussed the sensors
used by different measures for fatigue detection. Some surveys (Alsi-
bai and Manap, 2016; Williamson and Chamberlain, 2005; Mashko,
2015; Chacon-Murguia and Prieto-Resendiz, 2015; Sikander and An-
war, 2018) covered representative systems, devices, tools, applications,
and problems in driver fatigue detection. Others (Owen et al., 2015;

∗ Corresponding author at: College of Computer and Information, Hohai University, Nanjing, China.
E-mail address: fanliu@hhu.edu.cn (F. Liu).

Meng et al., 2015; Golz et al., 2010) focus on special topics for pro-
fessional drivers such as truck, taxi, and racing drivers. Golz et al.
(2010) reviewed and evaluated some commercial devices to meet the
requirements of the mining industry. In Koesdwiady et al. (2017b),
Koesdwiady et al. analyzed recent trends in driver safety monitoring
systems and reviewed some driver fatigue detection techniques. More
recent works on the advantages and disadvantages of features, clas-
sifiers, accuracy, system parameters, and environment can be found
in Kaplan et al. (2015), Ramzan et al. (2019), Němcová et al. (2021)
and Wang et al. (2021).

In recent years, fatigue detection has entered a new development
period due to wide use of RGB-D camera and deep learning technolo-
gies. However, all above-mentioned survey papers have not reviewed
or discussed the role of these two technologies for fatigue detection.
This review fills the gap by not only analyzing classic driver fatigue
detection methods, but also presenting the trends brought by RGB-D
camera and deep learning in the field. Furthermore, combination of
these two technologies is evaluated in experiments.

As shown in Fig. 1, we classify driver fatigue detection methods
into direct and indirect categories according to their relationship with
fatigue. The direct methods are further divided into the physiological
signal-based and driver behavior features-based. The indirect methods
mainly refer to those using vehicle driving features which cannot
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Fig. 1. Different categories of fatigue detection methods.
irectly reflect the degree of fatigue. Both direct and indirect meth-
ds focus on single fatigue characteristics, which sometimes cannot
uarantee robustness. This drawback can be addressed by informa-
ion fusion-based methods which integrate multiple fatigue features to
nhance reliability of detection.

This paper is an extension of our previous work (Liu et al., 2019a),
hich is enriched by reviewing more recently published papers on
river fatigue detection. Moreover, we add comparison and analysis of
ifferent fatigue detection technologies, especially for methods based
n RGB-D camera and deep learning technologies.

Leveraging the analysis of research trends, we propose a novel
river fatigue detection framework by integrating RGB-D camera and
eep learning. Additionally, we construct a driver fatigue dataset
nd conduct experiments to compare multiple deep learning solutions
or driver fatigue detection, such as Deep Convolutional Generative
dversarial Networks (DCGAN) (Radford et al., 2016), Deep Belief
et (DBN) (Hinton et al., 2006), Stacked Denoising Auto-encoders

SDAE) (Vincent et al., 2010), and CNN (Krizhevsky et al., 2012).
xperimental results show that the deep fatigue features are superior
o traditional visual fatigue features. Moreover, data augmentation
ased on multi-channel scheme and DCGAN (Radford et al., 2016) are
roved to be effective. Then, the information fusion strategy can further
nhance the robustness of fatigue detection.

The main contributions of this paper are as follows:

1. We overview and analyze four different types of fatigue detec-
tion technologies.

2. We review and discuss RGB-D camera and deep learning tech-
nologies as two state-of-the-art solutions for driver fatigue de-
tection.

3. We present the idea of using RGB-D camera and deep learning
technologies simultaneously and point out it is a valuable future
research direction.

4. Moreover, we validate and analyze the feasibility of multiple
deep learning solutions for driver fatigue detection.

The rest of the paper is organized as follows. In Section 2, we
resent the classic methods and products in driver fatigue detection.
hen we analyze the advantages and disadvantages of different fa-

igue detection technologies in Section 3. Section 4 introduces new
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developing trends and Section 5 validates the proposed solutions by ex-
periments. Finally, the conclusions of our work are drawn in Section 6.

2. Classic methods and products

As shown in Fig. 1, fatigue detection methods can be divided into
three categories: direct methods, indirect methods, and fusion methods.
Direct methods are based on driver physiological signals and driver
behavior features that are directly related to driver’s fatigue state.
The indirect methods refer to those based on vehicle driving features
which can indirectly reflect fatigue state. Both direct and indirect
methods rely on a single fatigue feature. On the contrary, the fusion
methods can integrate multiple fatigue features for the final prediction.
This section describes the classic fatigue detection methods based on
physiological signals, driver behavior features, vehicle running status
and information fusion respectively.

2.1. Fatigue detection based on physiological signals

Studies show that the physiological signal indicators deviate from
the normal values during fatigue (Shen et al., 2008). Therefore, whether
drivers are in a fatigue state can be determined by the changes of
the physiological signals. As the main bio-electric signals, the driver’s
electromyogram (EMG), electrooculogram (EOG), electrocardiogram
(ECG), and electroencephalogram (EEG) have already been leveraged in
fatigue detection. These methods are regarded as the fatigue detection
based on physiological signals.

The amplitude changes and frequency variation of EMG signals can
reflect the fatigue state, i.e. the amplitude increases with decreased
frequency during fatigue. The research by Naeije and Zorn (1982)
proved that significant changes in the EMG power spectrum may occur
during muscle fatigue. Based on this study, Hostens and Ramon (2005)
proposed an evoked potential method that can detect driver’s fatigue
state during long-distance driving. Petrofsky and Lind (1980) studied
the impact of temperature on the frequency and amplitude of EMG
power spectrum. Recently, Lu et al. (2021) proposed to embed surface
electromyogram (sEMG) sensors on a steering wheel. This method sig-

nificantly improved the convenience and user experience, but brought
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additional noise in the collected sEMG signal. Besides EMG, the ten-
dency of eye closing during fatigue can also be effectively detected by
EOG signal. For example, eye blink can be classified based on peak
amplitude, rise time, and fall time of the EOG waveform (Ohsuga et al.,
2007; Noguchi et al., 2007).

Since there were significant differences between the status of the
awakeness and tiredness for ECG signals (Calcagnini et al., 1994), some
representative characteristics of ECG signals such as low-frequency
energy (LF), very low-frequency energy (VLF), high-frequency energy
(HF), and LF/HF ratio have been used to detect fatigue. Rogado et al.
(2009) proposed to place the ECG electrode on the steering wheel grip
to obtain the real-time ECG data and heart rate variability (HRV). Jeong
et al. (2007) presented a driver stress index provision system with a
new ECG measuring method, which converts the ECG signals to HRV
for analyzing the time and frequency domain. Buendia et al. (2019)
also demonstrated the effectiveness of HRV by finding the relationship
between HRV and sleepiness.

Lal and Craig (2001b) and Lal et al. (2003) found the correlation be-
tween the driver’s fatigue state and the EEG. Experimental comparison
and analysis show that the 𝛿 and 𝜃 waveforms in the EEG hardly change
when the driver is in the early stage of fatigue. But when the driver is
extremely tired, the waveform in the EEG becomes greatly deepened.
According to the study of full-night spectroscopy (Cajochen et al.,
1999), topographical and temporal impact can be found on EEG activity
during sleep when the driver is lack of sleep. Therefore, EEG signal has
been widely used for evaluating driver fatigue state. Luo et al. (2019)
proposed to classify the fatigue state by adaptively extracting multi-
scale entropy features of the forehead EEG data. Zuraida et al. (2019)
tried to identify the best parameters for EEG based fatigue detection
methods. In their experiments, EEG changes related to fatigue were
only found at night. Further study from the perspective of complex
network theory reveals the relationship between brain network and the
fatigue behavior (Han et al., 2019b; Cai et al., 2019). Feature extraction
network and feature selection network can be used to extract more
discriminative features from EEG signals (Tuncer et al., 2020). Different
from the widely used spectral analysis of EEG signals, Tran et al.
(2008) proposed a sampling entropy and a second-order difference plot
method, which are quantized by Central Trend Measurement (CTM)
and used to nonlinearly analyze and process EEG signals. In addition,
according the finding of Kong et al. (2017), the delta and alpha
bands of EEG synchronizations in frontal and parietal lobe significantly
increase with fatigue. They used Mean Phase Coherence (MPC)-based
inter/intra-region phase synchronization and functional units (FUs) to
detect fatigue effectively.

For industry products, the Smart Car developed by MIT measures
the driver’s ECG signals, respiratory speed, skin resistance, and other
factors to estimate the driver’s fatigue state (Healey and Picard, 2000).
The Japanese Pioneer Corporation invented a product by detecting the
speed of a driver’s heartbeat to prevent drowsiness (Pioneer Corpo-
ration, 2020). These products directly put sensors on driver’s body,
leading to unpleasant user experience and sometimes even disturbing
the driving.

2.2. Fatigue detection based on driver’s behavior features

Driver’s fatigue state can also be detected based on the driver’s be-
havior features, for example, changes in the driver’s eyes, mouth, head,
and so on. Fig. 2 shows several Driver Danger Monitors from American
Attention Company. Early version (DD850) captures information about
driver’s eyes at night from an infrared camera. Upgraded products such
as MR688 and gogo850 (Nanjing Yuanqu Technology Co., Ltd., 2020)
work during the day as well. In the following, we will introduce the
technical details of this type of methods.

The state of eyes is regarded as an important feature for fatigue
detection. Wierwille et al. (1994) proposed PERCLOS as an important

parameter for driver fatigue detection. PERCLOS is the percentage of
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duration of closed-eye state in a specific time interval (1 min or 30
s) (PERCLOS, 1998). The PERCLOS-based method has been recognized
as the most effective on-board real-time driver fatigue assessment
method. EM, P70, and P80 are commonly used PERCLOS criteria which
indicates that eye closure is more than 50%, 70% and 80% respec-
tively. U.S. Federal Highway Administration (FHWA) and U.S. National
Highway Traffic Safety Administration (NHTSA) compared nine fatigue
detection indexes and found P80 showed the greatest correlation with
driver fatigue. Pauly and Sankar (2015) adopted PERCLOS for fatigue
detection, in which they used a Haar based cascaded classifier and
an HOG based SVM (Chang and Lin, 2011) classifier for eye rotation
tracking and eye-blink detection respectively, then calculate PERCLOS
to predict the driver fatigue state.

In addition to PERCLOS, other important eye features for fatigue
detection include eye gaze direction, blink frequency, and pupil char-
acteristics. Choi and Kim (2014) identify driver’s pupil position and
determine the fatigue state by the changes of driver’s sight-line. Since
the blink frequency under fatigue state is significantly higher than
normal, Suzuki et al. (2006) proposed a multiple regression model
to detect the fatigue by simultaneously calculating blink frequency
and PERCLOS. After evaluating 18 different eye features, Friedrichs
and Yang (2010) found that eye opening speed features and PERCLOS
achieved best fatigue detection accuracy.

Although the eye feature is highly useful, it is often affected by
reflections of glasses or the occlusion of sunglasses. The relatively small
eye region also brings difficulty for analyzing eye state. In contrast,
other driver’s behavior features such as head or mouth state are easier
to capture. Since driver’s head position is different in fatigue and awake
state, driver’s fatigue can be detected based on the nod frequency
during a specific period of time, e.g. using a fuzzy classifier (Bergasa
et al., 2006). Driver’s head position and angle of rotation were also used
to detect driver’s attention state (Murphy-Chutorian and Trivedi, 2010).
For mouth feature, driver’s specific mouth movements, such as yawn-
ing, may reflect the fatigue state. So far both geometric and texture
mouth features have been extracted for yawning detection (Rongben
et al., 2004; Fan et al., 2007). Moreover, due to the temperature
difference inside and outside the mouth, yawning can also be detected
from thermal images (Knapik and Cyganek, 2019).

2.3. Fatigue detection based on vehicle driving features

Vehicle’s driving state can somehow reflect driver’s fatigue. There-
fore, driving features such as lane offset, steering wheel angle, and
vehicle speed have been employed to detect fatigue. Fig. 3 shows a
few representative products, such as SafeTRAC (SafeTrac, 2020) from
American AssitWare Company, and the ADAS-P9 (ADAS, 2020) from
Israel Mobileye Company (Mobileye Company, 2020). These products
perform fatigue detection based on the offset state of the running
vehicle wheel.

Line offset measures the deviation of vehicle from the existing track.
The vehicle’s driving path is mainly monitored by computer vision
technology. Dingus et al. (1998) modeled the correlation between the
PERCLOS and driver’s lane offset produced by fatigue and proposed
that line offset information can be utilized as an indicator to detect
driver fatigue. Based on this idea, Chang et al. (2008) applied a
Radial Basis Probability Network (RBPN) to recognize the lane offset.
Matsushita and Miura (2011) developed a particle filter based lane
detection method. It treats the extracted road edge information as
several particles and uses particle filtering to detect their changes.

When the steering wheel has little variation for a while, and
abruptly changes within a vast range, it is likely to be attributed to the
fatigue state. According to this assumption, Takei and Furukawa (2005)
proposed a fatigue detection approach based on steering wheel angle,
which pre-processed the angle signals by Fast Fourier Transforms (FFT)
and Wavelet Transforms and then extracted relevant features. By moni-
toring the vehicle’s trajectory and steering wheel rotation angle, Zhong
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Fig. 2. Different fatigue detection products based on driver behavior features (DD850, gogo850, and MR688).
Source: Images extracted from Nanjing Yuanqu Technology Co., Ltd. (2020).
Fig. 3. Advanced Driving Assistant System (ADAS-P9). Image extracted from ADAS (2020).
et al. (2007) employed energy analysis and wavelet analysis techniques
to evaluate whether the driver was fatigued or not. Eskandarian and
Mortazavi (2007) carried out experiments of drowsiness detection for
truck drivers based on artificial neural networks, which showed that
steering signal difference could be effectively used for fatigue detection.

During fatigue state, the driver cannot estimate the speed accu-
rately. Therefore, the driving speed can also be used as a feature
to determine whether the driver is fatigued (Sandberg and Wahde,
2008). However, it is difficult to accurately infer the fatigue state
based on the information of vehicle speed solely. This is because the
vehicle speed is highly susceptible to external factors, such as traffic
conditions and personal driving styles. One solution is introduced by
Hu et al. in Hu et al. (2017), where they used real-world testing data to
establish personalized driving models. But this model only uses speed,
throttle position and brake pressure as input, which greatly limits the
model ability. Therefore, researchers began to combine these features
to provide more reliable detection results.

2.4. Fatigue detection based on information fusion

Fatigue is a physiological phenomenon with individualized char-
acteristics, i.e. different drivers have different fatigue features. There-
fore, single fatigue feature-based methods may not be suitable for all
drivers. In addition, detection methods based on single features are
easily affected by the interference of different environment conditions.
4

Therefore, it is hard to guarantee the validity and credibility of the
results.

In recent years, information fusion technologies have played an
increasing important role in driver fatigue detection. Information col-
lected by different sensors produce different fatigue features, which can
be fused for fatigue detection to make up the shortcomings of single
feature and improve the robustness of fatigue detection model. For ex-
ample, Seeing Machines exploited the faceLAB system (Fig. 4) (FaceLab,
2020) by integrating the features of PERCLOS, sight-lines and blink
frequency. Similarly, the AWAKE (System for Effective Assessment of
Driver Vigilance and Warning According to Traffic Risk Estimation)
project (TRIMIS, 2020) implemented an effective driver fatigue detec-
tion system by combining the features of eyes, steering wheel angle,
steering wheel force and lane offset.

Information fusion technologies for fatigue detection can be clas-
sified into rough set theory, dynamic Bayesian network, D-S evidence
theory, fuzzy neural network, and other fusion technologies. Du et al.
(2011) utilized a kernelized fuzzy rough sets to evaluate the quality
of candidate features and select the useful subset for fatigue detec-
tion system. In recent years, rough set theory has been exploited to
filter different fatigue signals (Ye and Zhao, 2018) or compute their
weights (Chen et al., 2018) to further enhance the robustness of driver
fatigue detection.

Yang et al. (2005) proposed D-S evidence theory to combine dif-
ferent features related to driver fatigue, such as driver’s sleep quality,
body temperature, mental state and so on. It was pointed out that
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Fig. 4. Driver fatigue monitor (faceLAB).
Source: Image extracted from FaceLab
(2020).
Table 1
Comparison of different fatigue detection methods.

Detection technology Contact Accuracy Practicability

Driver physiological signals � Very high Low
Driver behavior features × High Very high
Vehicle driving features × Medium High
Information fusion × Very high Very high

the D-S evidence theory not only effectively integrates lane offset and
eye features, but also successfully handles noisy data (Li et al., 2014).
The D-S evidence theory can also be integrated with Fuzzy Neural
Network (FNN). For example, Zhu et al. (2017) extracted multiple facial
features and used the FNN with adaptive and self-learning capabilities
to acquire a basic probability distribution of evidence. Then, a discount
strategy (Shafer, 1976) were exploited to amend the raw evidence and
detect the driver’s fatigued state.

One common limitation of the above information fusion methods
is they only explore the relationship between different fatigue fea-
tures, but do not consider their time dependencies. To overcome such
limitation, Yang et al. (2010) proposed to use a dynamic Bayesian
network to achieve fatigue driving detection with PERCLOS, EEG, ECG,
sleep quality (SQ), circadian rhythm (CR), working environment (WE)
and eye movement (EM) as input. Among these factors, EM, ECG,
and EEG can be obtained directly; SQ, WE and CR contain important
context information; fatigue and alarm states are used as the hidden
variables. Similarly, dynamic Bayesian network can be used with sleep
quality, the road environment, and the driving duration as input (Bani
et al., 2019) or with other variables related to vehicles, drivers and
environment (Chhabra et al., 2019; Al-Sultan et al., 2013).

3. Comparison of different fatigue detection technologies

In Section 2, we have reviewed four types of existing approaches
for driver fatigue detection. Technical details of different approaches
are presented. Now, we turn to present an in-depth analysis of the
characteristics of these approaches. First, the pros and cons of the four
types of approaches are compared. We summarize their properties from
different perspectives in Table 1, where ‘‘Contact’’ means whether the
sensor directly contacts the driver. We note that since mainstream of
physiological signal-based approaches employs contact devices, physi-
ological signal-based approaches are marked as ‘‘contact’’ in Table 1.
‘‘Accuracy’’ indicates the accuracy of fatigue detection system, and
‘‘Practicability’’ is the system adaptation capability. In the following,
we compare and discuss four types of fatigue detection methods in
detail, and give corresponding results and analysis.

3.1. Fatigue detection based on driver physiological signals

In recent years, thoughtful experiments have been conducted to
compare the effectiveness of different physiological signals for driver
fatigue detection. For example, Ahn et al. (2016) compared EEG, ECG,
5

Table 2
Fatigue detection accuracies using different input signals (Ahn et al., 2016).

Input signal Classification accuracy

EEG 59.7
ECG 64.5
fNIRS 66.8
EEG + ECG 69.0
EEG + fNIRS 68.3
ECG + fNIRS 69.2
EEG + ECG + fNIRS 75.9

and functional near infra-red spectroscopy (fNIRS) signals. As is Ta-
ble 2, their experimental results on eleven subjects shows that, among
the most popular two kind of physiological signals, ECG outperforms
EEG by nearly 5%. They also find that fNIRS signal can yield better
results. Later, Du et al. (2017) experimentally compared the result of
EOG and EEG signals, which demonstrated that EOG is superior to EEG.

Though the EOG-based fatigue detection approaches have shown
advantages in terms of accuracy, the complicated instruments may
affect the driving due to the visual interference. Compared to the
EOG-based methods, the ECG based techniques are easier to carry
and operate. However, the ECG signals have lower sensitivity, and the
discrepancies of different drivers may produce a significant error in the
driver’s heart rate (Naaz and Singh, 2014). Pulse detection is simpler
and more sensitive, but it is also uncomfortable for the driver because
the sensor needs to be in direct contact with the driver. Furthermore,
the individual difference of driver’s pulses leads to inaccuracy. The
fatigue detection methods based on the EMG signals ensure objective
authenticity (Raez et al., 2006), but the detection of the EMG signals
invades the driver’s skin and may have a negative influence on the
driver’s driving safety.

In general, fatigue detection by physiological signals are more accu-
rate than other non-contact approaches. Nonetheless, acquiring physi-
ological signals requires electrodes to contact the driver’s body, which
leads to some interference and additional burdens for driving. There-
fore, the practicality of this kind of methods is poor. Furthermore,
though combining multiple physiological signals can lead to superior
performance (Table 2), too much attached sensors could make the
driver very uncomfortable. Based on this fact, more and more re-
searchers are turning to exploiting human behavioral characteristics
and vehicle driving characteristics for fatigue detection since they can
be extracted by using non-contact devices. Some researchers tried to
extract physiological signals by a non-contact camera. For example,
Tsai et al. (2020) proposed a vision-based remote photoplethysmog-
raphy (rPPG) signal measurement system for driver fatigue detection.
However, the robustness of this type of method is poor.

3.2. Fatigue detection based on driver’s behavior features

To compare the effectiveness of different driver behavior features,
Qiao et al. (2016) conducted experiments using 500 blinking, 500 head
shaking, and 500 yawning to detect drier fatigue. Table 3 listed the
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Table 3
Test results of driver’s behavior features (Qiao et al., 2016).

Behavior feature Eye state Head state Mouth state

Detected fatigue 451/500 469/500 438/500
Accuracy 90.2% 93.8% 87.6%

detection accuracies, which show that the eye state and head state are
more sensitive than mouth state. Generally, the eye features are mostly
adopted for fatigue detection among existing literature due to its high
accuracy and sensitivity (Gu et al., 2002). However, the acquisition of
eye features is susceptible to factors such as sunlight, obstacles, and
whether the driver wears glasses. The characteristics of the driver’s
head are also useful for fatigue detection, but it is less expandable and
sensitive. Therefore, these features are often used as an assistance to
fatigue detection. As the mouth characteristics are susceptible to the
external environment, the fatigue detection methods based on mouth
features are also regarded as an auxiliary way for fatigue detection.

In short, although computer vision-based techniques have been
successfully employed to determine the fatigue state by monitoring the
driver’s eyes, head, and mouth features in a real-time and non-contact
way, they can be easily influenced by different driving circumstances
and environments, causing reduced performance (Abbas and Alsheddy,
2021).

3.3. Fatigue detection based on vehicle driving features

As far as the vehicle driving features, Sandberg and Wahde (2008)
tested four leading drowsiness indicators of vehicle driving features,
i.e., vehicle speed, lateral position, steering wheel angle, and yaw angle
of the vehicle. They found that the lateral position could achieve rela-
tively good fatigue detection results. It can be noticed that most driving
behavior based fatigue indicator is context-dependent to some degree.
To demonstrate this point, we collect 365 daytime road images and 570
night road images and use Hough transform (Illingworth and Kittler,
1988) to perform lane detection. The lane line detection results are
shown in Fig. 5. The accuracies of lane detection at night drops 1.46%
(from 93.76% to 92.3%) compared to that of daytime. Furthermore,
when the vehicle is out of control, the result of fatigue driving detection
is meaningless. Although the angle data of the steering wheel and
vehicle speed collected by the sensor have better sensitiveness without
influencing normal driving, they are easily affected by external factors
such as different driving habits, the driving environments, and the type
of vehicle. More importantly, it is hard to judge whether the driver is
fatigued while driving at a low speed. For all the above reasons, fatigue
detection based on vehicle speed (Sandberg and Wahde, 2008) has the
lowest accuracy.

In a broad sense, the most significant advantage of the fatigue
detection methods based on the driver’s behavioral features and vehicle
driving features is that the data acquisition is easy. However, the
difficulty of these methods lies in how to divide the driver’s state into
‘‘fatigue’’ and ‘‘non-fatigue’’, under different driving habits, vehicle va-
riety, and road conditions. Therefore, it is necessary to design different
criteria and set different ‘‘thresholds’’ for these methods.

3.4. Fatigue detection based on information fusion

The most important problem of data acquisition during fatigue
detection is uncertainty. The rough set theory (Du et al., 2011) can
be specifically designed to cope with this uncertainty at a low cost.
Although the uncertainty can be analyzed objectively, it does not
consider the expert experience. Dynamic Bayesian network can cope
with the sample sets with incomplete or lost data. Therefore, the driver
fatigue detection model using a dynamic Bayesian network (Knapik
and Cyganek, 2019; Dingus et al., 1998) can effectively promote the

reliability and robustness of early warning. The occurrence of fatigue
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is a gradual process, which requires training the network model every
once in a while. Otherwise, it will seriously affect the reliability of de-
tection. The D-S evidence theory (Yang et al., 2005) is regarded to have
robust decision processing ability, which can efficiently combine di-
verse information from many kinds of sensors by uncertainty reasoning.
Nonetheless, it still cannot get rid of the limitation of strict combination
conditions and exponential computation increase. By combining the
benefits of fuzzy theory and neural networks, FNN can effectually
exploit the correlative experts’ experience to detect the fatigue state.
Moreover, it has high recognition accuracy and fast learning speed.
The effectiveness of FNN is widely demonstrated. For example, in Dong
et al. (2008), the FNN is used to fuse the curvature of up-eyelid and the
distance of eyelid. Their results show that, the correct rate increases by
almost 8% after FNN fusion, and the wrong rate decreases by nearly
11%. However, FNN also has many shortcomings, such as long training
time, poor additivity, and complicated structure.

In general, traditional fatigue detection methods are limited with
low fault tolerance when using a single source of information as the in-
put. Instead, those information fusion based fatigue detection methods
do not rely on any unique fatigue features, but perform comprehensive
analysis of all the features of the driver to detect the fatigue state.
Therefore, they have better applicability and fault tolerance ability.

4. Development trends

At present, with the rapid development of various new technologies,
more fatigue detection methods emerged, which mainly reflects in the
following trends.

4.1. RGB-D camera and low-cost solutions

Non-contact fatigue detection approaches are mostly based on
driver behavior features. The drivers easily accept these approaches
since they are convenient and only need to put the camera in front
of drivers. However, most non-contact methods are based on con-
ventional RGB camera, which acquire RGB images by projecting a
three-dimensional scene onto a two-dimensional plane. As a result,
relative angle and distance to the camera are lost in the imaging
process. Moreover, driver’s clothes and lighting variation produce
diversified appearance information, which affects the extraction of the
driver’s fatigue features. Another problem of the RGB camera is how to
obtain a striking image at night. Recently, aiming at the shortcomings
of RGB camera, RGB-D camera have been increasingly applied in
fatigue detection. For example, low-cost infrared depth camera Kinect
from Microsoft has been used for fatigue detection (Marinello et al.,
2014). In Fig. 6, we show some examples of RGB image, depth image,
near-infrared image, and skeleton captured by Kinect.

The depth data not only effectively compensates for RGB image
but also avoids confusion caused by the driver’s cloths and lighting
variations. Leveraging these strengths, many depth camera-based driver
fatigue detection approaches have emerged in recent years. Since head
pose can be effectively estimated by RGB-D camera, an efficient method
is to first estimate the head pose using RGB-D images, then use this
information to learn to predict driver fatigue (Cao and Lu, 2013; Wong-
phanngam and Pumrin, 2016; García et al., 2014). Head pose can also
be integrated with other features for example, eye state (Zhang et al.,
2015a), or a combination of eye, hand, head, and face features (Craye
and Karray, 2015). Recently, Du et al. (2021) employed an RGB-D
camera to extract heart rate, eye openness level, and mouth openness
level, then used a recurrent neural network to fuse these multi-modal
features. With the help of the depth images obtained from the RGB-D
camera, the plane distance to the camera can be calculated to partially
make up for the information missing from RGB cameras. Moreover, the
depth data will not be interfered with by the appearance information.

Therefore, more and more researchers focus on the utilization of RGB-D
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Fig. 5. Lane detection at daytime and night. First row: input images, second row: detection results.
Fig. 6. RGB image, depth image, near-infrared image, and skeleton captured by Kinect.
camera in fatigue detection, which has become a novel and significant
research direction.

Recently, some other low-cost solutions have also been adopted
for fatigue detection, such as low-cost sensors, embedded devices and
smartphones (Meireles and Dantas, 2019; Isaza et al., 2019; Shin et al.,
2019; Xie et al., 2019). Sikander and Anwar (2021) proposed 3-D
representation-based fatigue detection by utilizing fatigue-related facial
action units, and exhibited its superiority to 2D representation. Inspired
by these low-cost solutions, we also tried to design a Raspberry Pi based
low-cost platform, which is shown in Fig. 7. An additional Movidius
neural compute stick was plugged in the USB port to enhance the
computing ability. Moreover, six infrared lamps were put around the
camera to obtain better videos at night. As shown in Fig. 8, this kind
of low-cost solution can also meet the fatigue detection requirement.

4.2. Deep learning

In recent years, many kinds of deep learning technologies have been

developed. Deep learning stimulates the mechanism of the human brain

7

to interpret the data and effectively extracts the characteristic of the
data. Deep models automatically learn and establish fatigue detection
standards from the training samples. By using powerful deep models,
we can get rid of the dependence on those handcrafted fatigue detection
standards. Moreover, deep learning technologies can learn the fatigue
characteristics and standards for specific groups, which improves the
adaption to different groups. Therefore, many motor corporations and
research institutions have begun to exploit deep learning technologies
to study driver fatigue detection. According to the aforementioned
classification rule, deep learning-based fatigue detection approaches
can also be divided into four types.

4.2.1. Driver physiological signals
Pioneer work of deploying deep learning models to extract features

from EEG signals can be dated back to 2010, when Deep Belief Network
(DBN) and Convolutional Neural Network (CNN) (Wulsin et al., 2011;
Cecotti and Graser, 2010; Li et al., 2021) were used to extract features
from EEG signals. DBN and CNN are usually tested on 2D image

data, but they also showed strong ability to extract features from EEG
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Fig. 7. A Raspberry Pi based low-cost platform.
Fig. 8. Fatigue detection results based on Raspberry Pi. Left: detected face bounding box and landmarks. Right: estimated eye opening level.
Table 4
EEG signals based deep learning methods.

Ref. Representation Classifier Accuracy

San et al. (2016) Power Spectral density SVM 61.00%
DBN 73.29%

Hajinoroozi et al. (2015) PCA Bagging AZ score = 70.98%
DBN AZ score = 81.36%

Wen and Zhang (2018) AutoEncoder AdaBoost 95.00%
Wu et al. (2019) AutoEncoder Softmax 91.67%
Zhu et al. (2014) AutoEncoder Linear Regressor Correlation Coefficient = 0.73
Rundo et al. (2019) Stacked AutoEncoder Softmax 100%
Ma et al. (2019b) Modified-PCANet SVM 95.14%
Panwar et al. (2019) GAN Softmax AUC = 66.49%
signals. To deal with the driver fatigue detection task, a straightforward
solution is to train an unsupervised deep model to extract features and
feed the deep features into traditional classifiers. So far, deep features
extracted by DBN have been used with SVM and Bagging classifier (San
et al., 2016) and Hajinoroozi et al. (2015). Similarly, other unsuper-
vised deep models such as AutoEncoder (AE) (Wen and Zhang, 2018;
Wu et al., 2019; Zhu et al., 2014), Stacked AutoEncoder (SAE) (Rundo
et al., 2019), PCANet (Ma et al., 2019b), and Generative Adversarial
Network (GAN) (Panwar et al., 2019) were also introduced to extract
deep features. We summarize the existing physiological signal-based
deep driver fatigue detection approaches in Table 4.

As another emerging research trend, end-to-end deep learning mod-
els gradually began to be deployed. These methods use different signal
processing methods such as covariance matrices (Hajinoroozi et al.,
2017), Continuous Wavelet Transform (CWT) (Poorna et al., 2021),
Differential Entropy (DE), and Power Spectral Density (PSD) (Ko et al.,
2020; Zhang et al., 2020), and combine the advantage of both effective
signal processing algorithms and powerful deep models. Zhang et al.
(2020) combined DE and PSD with a Graph Convolutional Neural Net-
work (GCNN) to extract features from spatial and temporal domains si-
multaneously. Similarly, an EEG-Based Spatio-Temporal Convolutional
Neural Network (ESTCNN) was proposed by Gao et al. (2019). Fur-
thermore, fussy neural network was combined with RNN and CNN to
8

extract spatio-temporal features (Rundo et al., 2019; Ma et al., 2019b).
In summary, some physiological signal-based deep methods mainly
focus on learning temporal features (San et al., 2016; Hajinoroozi
et al., 2015; Wen and Zhang, 2018; Wu et al., 2019; Zhu et al., 2014;
Rundo et al., 2019; Ma et al., 2019b; Panwar et al., 2019; Hajinoroozi
et al., 2017; Poorna et al., 2021; Ko et al., 2020), while some others
paid attention to modeling spatial information such as dependencies
between electrode nodes (Zhang et al., 2020; Gao et al., 2019; Liu et al.,
2015; Du et al., 2020).

4.2.2. Driver behavior features
Eye state feature. Traditional eye state classification methods often
suffer from illumination, occlusion, and pose variation in real-world
driving conditions. In contrast, deep models are more robust and
accordingly can produce higher accuracy. Kim et al. (2017) first at-
tempted to utilize CNN to perform eye state classification. Later, Zhao
et al. (2018) fused the features extracted from a pre-trained CNN and a
fully-connected neural network to jointly perform eye state classifica-
tion. However, these two deep models did not attempt to link the eye
states with driver fatigue states. To address this problem, Chirra et al.
(2019) predicted fatigue state by detecting 10 continuous frames of
closed eye. More researchers (Hao et al., 2019; Liu et al., 2019c; Zhang
et al., 2017) combined the PERCLOS criterion with CNN to predict
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Table 5
Performance of eye state classification by different algorithms.

Algorithm Accuracy

SVM 90.37%
Random forest 94.76%
MLP 95.18%
CNN, Kim et al. (2017) Equal Error Rate = 0.2366
CNN + transfer learning, Zhao et al. (2018) 97.19%

the fatigue state. Xiao et al. (2019) proposed an end-to-end model by
replacing the PERCLOS criterion with an LSTM network and achieved
better accuracy. However, this method is very time-consuming.

As shown in Table 5, these deep learning based methods can achieve
better performance compared to traditional algorithms such as SVM,
Random Forest, and MLP.

Gaze zone feature. Besides the eye state, the eye gaze zone can also
eflect the driver’s fatigue state. An good gaze zone estimation model
hould simultaneously take different factors into account, such as eye
eatures, relative face position, and head pose features. Zhang et al.
2015c) combined the eye features extracted by CNN with face angle
alculated by a 3D shape model. The iTracker (Krafka et al., 2016)
xtracted eye and face features both from Convolutional Neural Net-
ork (CNN), and also combine the face position information. Though

ombining different factors can improve the accuracy, it increases the
omplexity and consumes more computing time. In Choi et al. (2016),
esearchers accomplished real-time gaze zone classification (with an av-
rage 24 fps) by using the eye region patches alone. George and Routray
2016) took the whole face image as the input, but the processing
peed dropped to 20 fps. Moreover, in those real-time methods (Choi
t al., 2016; George and Routray, 2016), the gaze zone estimation was
egarded as a classification task instead of a regression task (Zhang
t al., 2015c; Krafka et al., 2016). Therefore, the trade-off between time
omplexity and accuracy is an important issue for gaze zone estimation
odels.

awning feature. As another important behavior feature, the yawning
eature is valued by many researchers for driver fatigue detection.
hang et al. (2015b) proposed a deep learning-based driver yawning
etection model consisting of a face detector, a nose detector, a nose
racker, and a yawning detector. According to the extracted features
rom a single image, a neural network is used to output a confidence
core of yawning. Nevertheless, yawning is a continuous behavior that
ould last for dozens of frames. Detecting yawning from a single static
mage does not make full use of the contextual information. There-
ore, more researchers used temporal deep models, such as the Long
hort-Term Memory (LSTM) neural networks, to recognize driver’s
awn.

Zhang et al. (2017) proposed to stack LSTM layers on the GoogLeNet
o perform driver yawning detection. This model was modified by re-
lacing LSTM with Bi-LSTM (Saurav et al., 2019). Xie et al. (2018) first
rained an image-based yawning detection model, and then converted
he model into a video-based model by combining LSTM. To better
ecognize short-term subtle facial action for yawning detection, Yang
t al. (2021) combined Bi-LSTM with a 3D-CNN, and added a key frame
election step to remove the redundant frames and enhance the model
fficiency for real-time performance.

ead pose feature. Deep learning-based head pose estimation emerged
n 2014. Ahn et al. (2014) trained CNN to directly output a 3-D head
ose vector, a Bayesian sequential estimation module was coupled to
void jittery output. To further capture the contextual information,
orghi et al. (2017) stacked LSTM layers on CNN. The input images of
he model were captured by a depth camera, while in Venturelli et al.
2017), two depth cameras at different angles were deployed to obtain
ulti-view visual information and achieve higher accuracy. Moreover,

o solve the problem of lacking large amount of annotated training
9

data, Liu et al. (2016) generated virtual samples with variations by
a 3D shape model. Different from the above image-based head pose
estimation models, Han et al. (2019a) used a neural network and
MEMS magnetometer attaching to driver’s neck to perform head pose
estimation. Yang et al. (2020) applied Radio Frequency Identification
(RFID) sensors to detect driver’s head movement. They used an Vari-
ation Auto-Encoder (VAE)-based anomaly detection method to detect
nodding behaviors. However, compared with the above non-invasive
approaches, these two methods are less user-friendly.

Latent feature. The above methods were designed to detect fatigue state
by focusing on specific fatigue features, such as eye state, gaze zone,
head pose, etc. Some researchers adopted a different strategy by trying
to extract latent fatigue-related feature and combine it with softmax
classifiers (Dwivedi et al., 2014; Koesdwiady et al., 2017a; Park et al.,
2016), or traditional classifiers such as SVM (Lopez et al., 2017) and
Gradient Boosting Machine (Huynh et al., 2016). In addition, many
researchers have discovered the potential of local methods, so parallel
CNNs can be deployed to simultaneously take the global face and local
patches as input to extract different levels of features (Reddy et al.,
2017; Lyu et al., 2018; Huang et al., 2020; Liu et al., 2019b).

Most of the above-mentioned methods (Dwivedi et al., 2014; Koes-
dwiady et al., 2017a; Park et al., 2016; Reddy et al., 2017) used
a single image as the input without considering the contextual in-
formation, while others extracted video-based features. Zhao et al.
(2017) performed latent fatigue feature extraction by a video-based
DBN model. In order to extract temporal features and spatial features
simultaneously, Huynh et al. (2016) developed a 3D CNN model. Ma
et al. (2019a) further proposed a model with three parallel 3D CNNs,
which respectively take original image sequence, optical-flow images,
and Optical Flow Motion History Images (OF-MHI) as inputs. However,
the time window for 3D CNN model is fixed, the model might fail
when fatigue behaviors have longer duration. In contrast, the LSTM
model is capable of both short-term and long-term recognition. Models
combining one, two, and three LSTM layer(s) with CNN have been
reported to extract spatial–temporal features for fatigue detection (Shih
and Hsu, 2016; Huang et al., 2020; Lyu et al., 2018).

4.2.3. Vehicle driving features
Vehicle-related applications, such as drive scene perception, path

planning, and lane detection, have been powered by deep learning.
Kim and Lee (2014) proposed to combine CNN and random sample
consensus to perform robust lane detection. Lee et al. (2017) designed
a multi-task structured Vanishing Point Guided Network (VPGNet).
Experiments (Feng et al., 2018) show that VPGNet outperformed object
detection model R-FCNN (Dai et al., 2016). Recently, Zou et al. (2019)
combined LSTM with CNN to perform video-based lane detection.
Compared with inferring lane position on a single image, video-based
methods can achieve higher accuracy and handle difficult situations.
However, these methods did not use extracted features to infer fatigue
state. Vehicle-related applications, when handcrafted features were
used, neural network-based methods (Zhao et al., 2019; Li et al., 2017;
Chen et al., 2015) demonstrated sound capability on fatigue state
prediction. Li et al. (2019b) showed that RNN with a fuzzy layer can
also learn fatigue features in the time domain. These methods are all
based on steering wheel angle or yaw angle features which can be easily
collected through sensors. However, they are also easily disturbed by
the variations of driver’s habits and traffic conditions.

4.2.4. Information fusion
Predicting driver’s fatigue state is influenced by various types of in-

formation. The relationship between information can be used to jointly
predict driver fatigue and complement each other if some sensors fail.
As shown in Table 6, information fusion based deep fatigue detection
models can be divided into four types: driver physiological signal
fusion, driver behavior feature fusion, vehicle driving feature fusion,

and multi-modal feature fusion.
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Table 6
Information fusion based deep learning methods.

Type Ref. Fusion method Fused features

Driver physiological
signal fusion

Zhang et al. (2016)

ANN

EEG, EOG

Huo et al. (2016)
Wu et al. (2021)
Li et al. (2018)

Du et al. (2017) Deep auto-encoder
Zhang and Etemad (2019) Capsule attention module
Jiao et al. (2020) LSTM

Zhang et al. (2013) ANN EEG, EOG, EMG
Han et al. (2020) ANN EEG, ECG, Respiration, EDA

Driver behavior
feature fusion

Ji et al. (2019) Rule-based Eye State, MouthGuo and Markoni (2019) Binary coding

Sikander and Anwar
(2021)

CNN Eye State, Mouth, Forehead

Yu et al. (2016) CNN

Eye State, Mouth, HeadZhang et al. (2019) ANN
Celona et al. (2018) Attention module
Weng et al. (2016) HMM

Vehicle driving
feature fusion

Tango and Botta (2013) ANN/RNN Speed, Time to collision,
Time to lane crossing,
Steering angle, Lateral position,
Position of the accelerator pedal,
Position of the brake pedal.

Shahverdy et al. (2020) CNN Acceleration, Gravity, Throttle, Speed, RPM

Multi-modal
feature fusion

Utomo et al. (2019) LSTM Eye State, Heart Rate
Li et al. (2019a) Active Learning Eye State, Mouth, SWA
Jain et al. (2016) ANN Vision Feature, Road Facing Camera Images
Streiffer et al. (2017) ANN Vision Feature, IMU data
Karuppusamy and Kang
(2020)

ANN EEG, Accelerometer, Gyroscope Sensor, Vision
Feature

Lim and Yang (2016) CNN Velocity, Acceleration, Steering Wheel Angle,
Gas Pedal Angle, Blinking Rate,
PERCLOS, Facial Direction,
Audio Amplitudes, Heart Rate,
Respiration Rate, Galvanic Skin Response,
Body Temperature
Driver physical feature fusion is normally done on EEG and EOG
ignals. Several deep models, including fully-connected neural network,
eep auto-encoder, and capsule attention module, have been used to
use them (Zhang et al., 2016; Huo et al., 2016; Wu et al., 2021; Li
t al., 2018; Du et al., 2017; Zhang and Etemad, 2019). Jiao et al.
2020) proposed to segment the EOG signal samples based on the EEG
ignal, and then fed the segmented EOG samples into the LSTM network
o predict fatigue. They also used GAN-based data augmentation to
lleviate the insufficient data problem. Moreover, by using EEG, EMG,
nd EOG signals, Zhang et al. (2013) proposed a real-time fatigue
etection method based on various entropy and complexity measures.
CG, EDA, and respiration signals have also been combined to perform
atigue detection (Han et al., 2020).

In fusion of driver behavior features, highly distinguishable eye
nd mouth features are commonly used. For example, SP et al. (2021)
ombined face key points, eye and mouth opening states to inference
atigue state jointly. Ji et al. (2019) proposed eye state and mouth state
ecognition networks and fused multi-indicators for fatigue judgment.
uo and Markoni (2019) used CNNs to analyze the eyes states and
outh state, then used LSTM to extract temporal features from the vi-

ual information. Sikander and Anwar (2021) reconstructed 3D shapes
f the eye, mouth, and forehead and calculated their quiver map that
epresent subtle facial action. Many approaches also used head pose
eatures in the prediction (Yu et al., 2016; Zhang et al., 2019; Celona
t al., 2018; Weng et al., 2016). The relevance of multiple features,
rivers status and their temporal dependencies can be further modeled
sing attention module (Celona et al., 2018) and Hidden Markov Model
HMM) (Weng et al., 2016).

Tango and Botta (2013) fused various types of vehicle information
ncluding speed, time to collision, time to lane crossing, steering angle,
10
lateral position, position of the accelerator pedal, and position of
the brake pedal. A fully-connected neural network and an RNN were
utilized to analyze the input features. Shahverdy et al. (2020) converted
vehicle signals (including acceleration, gravity, throttle, speed, and
revolutions per minute) to a 2-D matrix by calculating the recurrence
plot, then used CNN for feature extraction and classification.

The above mentioned fusion methods are all based on the same type
of information which may be highly correlated to each other or cannot
provide complementary information. For example, both deep visual
features of eye state and yawn detection may fail when the vehicle is in
a dark environment, causing corresponding fusion failure. In contrast,
multi-modal fusion methods could benefit from highly complementary
information. Omerustaoglu et al. (2020) proved this point by compre-
hensive comparative experiment. They found that compared to using
vision-only information, further utilization of sensor data (e.g., speed,
fuel level, acceleration, etc.) can improve the model performance by up
to 9%. Utomo et al. (2019) used PERCLOS and heart rate features as
the input to the LSTM network. Li et al. (2019a) calculated parameters
including eye open-angle, mouth open-angle, change of the SWA, and
the speed of SWA change. These parameters were concatenated into
a vector and inputted into a semi-supervised active learning model.
By adding a fully-connected layer in the LSTM model, Jain et al.
(2016) fused vision features and vehicle driving features. In the DarNet
proposed by Streiffer et al. (2017), vision features extracted by CNN
and IMU data collected from the driver’s mobile device were fused.
Moreover, features in all the three modalities, including physiological
signal feature, behavior feature, and vehicle driving feature, can be
combined by parallel deep networks (Karuppusamy and Kang, 2020)
and CNN (Lim and Yang, 2016). Zhang et al. (2021) fused vehicle
sensors signal, an acoustic signal and visual signal, and then developed
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Fig. 9. Illustration of driver fatigue detection based on the integration of RGB-D camera
and deep learning.

a driver distraction detection method based on a reconstruction-based
anomaly detection scheme. Driver distraction and driver fatigue differ
in the fact that distracted driver could make additional sounds, but
fatigue driver is usually quiet. Therefore the acoustic signal adopted
in Zhang et al. (2021) may not be useful for driver fatigue detection.

5. Integration of RGB-D camera and deep learning

Based on the above analysis, it is natural to consider integration of
RGB-D camera and deep learning technologies. The integration frame-
work is shown in Fig. 9. First, by making full use of RGB images, depth
images, and near-infrared images, those observable fatigue features
such as hand behavior, head posture, eye state, and mouth state can
be effectively extracted. In addition, the latent driver fatigue features
which has powerful representation capabilities can be extracted by a
deep learning model. Finally, the extracted fatigue features are fused
to estimate driver’s fatigue state.

Integration of RGB-D camera and deep learning will bring two
benefits. First, the depth image and near-infrared image from RGB-D
camera can be used as supplements to the standard RGB cameras. For
example, depth image and near-infrared image are effective in both
day and night environments, but RGB image has better resolution.
The combination of them can improve the accuracy and robustness
of the fatigue detection system. Second, the representation capability
of deep latent features is much better than traditional hand-craft fea-
tures, leading to higher fatigue detection accuracy. Moreover, unlike
traditional methods such as Cyganek and Gruszczyński (2014), the
deep learning model can automatically learn useful information across
different channels. Therefore it can fuse the information from RGB,
depth, and near-infrared images more effectively. In the rest of this
section, we present a set of experiments to validate the effectiveness
of this framework from different aspects.

In this section, we will conduct a series of experiments to validate
this framework. In Section 5.1, we first compare deep features with
traditional visual descriptors and show its superiority, then compare
different deep features and found that CNN achieves the best perfor-
mance. Then, we demonstrate the data hungriness of deep features, and
11
Table 7
Accuracies of CNN and hand-crafted features for eye state classification.

Eye feature Accuracy

Local Binary Pattern (LBP) (Ojala et al., 2002) 92.0%
Weber Local Descriptor (WLD) (Chen et al., 2010) 94.5%
Weber Local Binary Pattern (WLBP) (Liu et al., 2013) 96.6%
Convolutional Neural Network (CNN) 98.2%

show that a GAN-based data augmentation strategy can alleviate this
issue in Section 5.2. Finally in Section 5.3, we collect a driver fatigue
detection dataset and conduct experiments with a variety of learning
algorithm to demonstrate the effectiveness of integrating RGB-D camera
and deep learning.

5.1. Effectiveness of deep features

We first demonstrate the advantage of CNN over traditional meth-
ods through the eye state classification task. Three typical traditional
handcrafted features including Local Binary Pattern (LBP) (Ojala et al.,
2002), Weber Local Descriptor (WLD) (Chen et al., 2010), and Weber
Local Binary Pattern (WLBP) (Liu et al., 2013) are compared with CNN.
In the experiment, 7686 images from RPI ISL Eye Database (Wang and
Ji, 2005) containing 3456 open eye images and 4140 close eye images
are adopted. We use 1576 opened eye images and 1840 closed eye
images for training and use the remaining images for testing. All the
eye images are normalized to the size of 28 × 28. For the handcrafted
features, SVM (Chang and Lin, 2011) is used as classifier. For the CNN
features, the structure of CNN model is shown in Fig. 12. The testing
accuracies are shown in Table 7. Not surprising, the performance of
CNN is better than LBP, WLD, and WLBP features.

Besides these observable fatigue features, we also extract and com-
pare the latent fatigue features by three deep learning technologies
CNN (Krizhevsky et al., 2012), Deep Belief Nets (DBN) (Hinton et al.,
2006), and Stacked Denoising AutoEncoders (SDAE) (Vincent et al.,
2010). We first construct a dataset containing 4441 face images, in
which 2000 images are labeled as fatigue state by professional data
annotator and the others are regarded as awake state. In the constructed
dataset, 543 face images are collected by a standard RGB-D camera,
and 3898 face images are extracted from public face datasets including
AR (Martínez, 1998), YaleA (Belhumeur et al., 1997), YaleB (Georghi-
ades et al., 2001), and JAFFE (Lyons et al., 1998). The train-test split
ratio is 8:2. Fig. 10 shows the training losses and testing accuracies of
CNN, DBN, and SDAE. Compared with DBN and SDAE, CNN achieves
the best fatigue detection result. It demonstrates the effectiveness of
CNN and its advantage over DBN and SDAE. Therefore, in the sub-
sequent experiments, we will utilize CNN to extract the latent fatigue
feature.

5.2. Effectiveness of data augmentation

Although CNN achieves the best results, we find that its perfor-
mance heavily relies on the number of training samples. To demon-
strate this point, we train a series of CNN with different sizes of the
training set, then compare their accuracies. The training samples are
randomly selected, and the remaining samples are utilized for testing.
As shown in Fig. 11, when the number of training samples is limited
to 500, the accuracy dropped to 80%. When there are only 10 training
samples, the accuracy is slightly higher than the random guess (50%). It
shows that the performance of deep learning methods are significantly
influenced by the size of training set. But in some cases, it is difficult yet
expensive to construct large-scale annotated dataset for driver fatigue
detection. Therefore, it is necessary to consider data augmentation to
further improve the performance.

Based on the comparison between CNN and traditional features in
the last section, we can attribute the advantage of CNN over traditional
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Fig. 10. The training loss and testing accuracies of DBN, SDAE, and CNN for latent fatigue detection.
Fig. 11. Eye state detection accuracies of three-channel (RGB) and four-channel
(RGB-D) CNN with different number of training samples.

features to the ability of learning pixel-wise patterns. Except this,
CNN may also have the potential to learn complementary channel-
wise information. This property could benefit the model when taking
multiple-source inputs, such as depth, near-infrared and standard RGB
channels. To verify this point, we test a four-channel scheme for data
augmentation, where an additional gray-scale channel is integrated
with the RGB channel. As shown in Fig. 11, the four-channel scheme is
superior to the three-channel, especially when the number of training
sample is limited. The improvement from adding channel demonstrates
that CNN successfully learns to extract complementary channel-wise
information. Therefore, we believe that the multi-channel scheme of
CNN is an effective way to integrate the multi-source information such
as RGB image and depth image.

One of the most widely used deep learning technologies for data
augmentation is GAN (Goodfellow et al., 2014). Compared to random
scale and crop, GAN-based models can automatically learn the distribu-
tion of real data and generate realistic sample. However, there are few
works using GAN for driver fatigue detection. To validate its feasibility,
we use the Deep Convolutional Generative Adversarial Networks (DC-
GAN) (Radford et al., 2016) to generate more virtual eye image samples
for training the CNN, which is illustrated in Fig. 12. The generated eye
12
Table 8
Classification accuracies based on RGB-D camera for different tasks.

Task Accuracy

Eye Open/closed 89%
Mouth Open/closed 62%
Head Normal/drop 67%

samples are shown in Fig. 13. To validate its effectiveness, the training
samples from the original training set are first used to train the DCGAN
model to generate new samples. Then, we use the trained DCGAN to
generate 10, 100, 300, 500, 700, 1000, 2000, 3000 samples and mix
them with the original training samples to obtain a series of augmented
training sets. These augmented training sets are respectively utilized
for training CNNs. The test results with three-channel and four-channel
CNN are shown in Figs. 14 and 15, respectively, where 𝑛 represents the
size of the original dataset. It can be seen that the augmented samples
from DCGAN can effectively improve the classification accuracy.

5.3. Effectiveness of RGB-D camera and information fusion

To validate the effectiveness of the RGB-D camera, we compare
the reliability of eye, mouth and head fatigue features extracted from
Kinect. For eye and mouth behaviors, we respectively test their recog-
nition accuracy of open and closed states. For head, we test the recog-
nition accuracy of normal and head drop states. The experiment for
each task is conducted ten times independently, and the average results
are reported in Table 8. It shows that RGB-D camera is an effective
way to extract different fatigue features. However, the mouth and head
features are less reliable than eye features. Therefore, the fusion of
different fatigue features is necessary to get more robust results.

To demonstrate the effectiveness of information fusion, we conduct
comparative experiment to validate different types of fatigue features.
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Fig. 12. Illustration of DCGAN+CNN for eye state detection. The training set contains various kinds of eye images such as different skin colors, gray images, blur, light-reflecting,
akeup, different pupil colors, and so on.
Fig. 13. Generated eye samples by DCGAN.
Fig. 14. Testing accuracies under different number of original training samples and augmented samples by three-channel DCGAN+CNN.
Fig. 15. Testing accuracies under different numbers of original training samples and augmented samples by four-channel DCGAN+CNN.
We collect a driver fatigue video dataset1 of 17 drivers containing
fatigue state or non-fatigue state, where the videos of non-fatigue state

1 The dataset is available at https://github.com/ChenDelong1999/
riverFatigueDetection.
13
are collected when the drivers have sufficient sleeping, while fatigue
state videos are collected under sleep deprivation condition. Some
samples in this dataset are shown in Fig. 16. Each video clip lasts about
100 s. We use a 300-frame sliding-window and a stride of 5 frames
to collect training and testing samples. Each sample consists of 300

https://github.com/ChenDelong1999/DriverFatigueDetection
https://github.com/ChenDelong1999/DriverFatigueDetection
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Fig. 16. Samples of the collected dataset. Upper row: fatigue state. Bottom row: non-fatigue state.
Table 9
Representation formats and the fusion strategies.

Feature Value Fusion1 Fusion2

Eye Left Unknow/Opened/Maybe/Closed � �Right

Mouth Closure Unknow/No/Maybe/Yes � �Moving

Head Yaw, Pitch, Roll � �

Emotion Unknow/Not happy/Maybe/happy � �

Latent (ResNet
He et al., 2016)

Fatigue/Non-fatigue �

Table 10
Results of fatigue detection using different features, classifiers, and fusion strategies.

Eye Mouth Head Fusion1 Fusion2

KNN 71.90% 63.76% 63.61% 67.27% 69.67%
Decision Tree 81.52% 56.75% 59.12% 80.82% 83.01%
AdaBoost 82.02% 69.37% 72.34% 86.80% 89.06%
Logistic regression 84.04% 62.36% 64.87% 85.67% 87.60%
Random forest 89.63% 61.77% 62.04% 88.88% 89.76%
Gradient boosting 90.83% 73.73% 64.47% 92.14% 92.48%
SVM 90.33% 70.12% 64.87% 87.75% 90.70%
LSTM 92.00% 69.00% 61.00% 93.00% 94.00%

Average 85.29% 65.86% 64.04% 85.29% 87.03%

video frames and a label indicating the corresponding fatigue state.
The dataset are divided into training set and testing set whose sizes
are respectively 13,402 and 7332.

In our experiments, eye state, mouth state, head pose and face
emotion state estimated by the RGB-D camera are used as fatigue
feature. The eye state, mouth state and face emotion predictions are
converted to two-way one-hot vectors, while head pose is represented
as 3-dimensional head orientation vector. Moreover, a standard ResNet-
18 (He et al., 2016) is trained from scratch to extract latent fatigue
feature. The ResNet-18 backbone takes normalized 224 × 224 RGB
image as input. A linear classifier is attached to the 1024-dimensional
feature to convert it to two-way class possibility scores. The network is
trained with cross-entropy loss function by stochastic gradient descent
(SGD) with a learning rate of 10−3 for 100 epochs. To verify the
dvantages of information fusion, two types of fusing strategies were
ried. The first one is to fuse all types of fatigue features, and the
ther does not consider latent fatigue features. These different feature
epresentation and fusion strategies are summarized in Table 9.

As shown in Table 10, we respectively use KNN, decision tree,
ogistic regression, random forest, gradient boosting, SVM, and LSTM to
etect the fatigue state based on different fatigue features. The experi-
ent results clearly show that the eye features are more effective than

he mouth and the head pose features. Moreover, the fused features
utperform any type of single feature. LSTM achieves the best result
y integrating all kind of fatigue features. It clearly demonstrates the
dvantage of combining RGB-D camera and deep learning.

.4. Discussion and future research directions

The goal of the above experiments is to demonstrate the effective-

ess of integrating RGB-D camera and deep learning from different

14
perspectives. CNN-based methods have outperformed several tradi-
tional methods, and its combination with RGB-D camera can further
enhance the performance. Therefore, deep learning and multi-sensor
information fusion have become an increasingly important research
trend on driver fatigue detection. We further demonstrated that large-
scale training data is an important prerequisite of developing a deep
learning-based driver fatigue detection system. When the training data
is not sufficient to enable the CNN to learn generalizable representa-
tions, the fatigue detection accuracy will drop dramatically due to the
overfitting problem.

However, it is non-trivial to construct a driver fatigue detection
dataset that is not only large-scale, but also multi-modal and high-
quality. Due to the lack of a well-recognized public benchmark dataset,
current fatigue detection research is mostly undertaken on non-public
datasets, which greatly limits the fair evaluation of different
approaches. The difficulty of obtaining training data lies in several
aspects. First, the cost of constructing a dataset is high, no matter
based on driving simulator or real driving environment. A driving sim-
ulator cannot fully simulate driving conditions, including acceleration
feedback, the influence of passengers, and other in-car environments,
etc. On the other hand, collecting a driver fatigue dataset in a real
environment brings additional safety risks and ethical issues (Němcová
et al., 2020). Finally, the annotation of fatigue status is often based on
subjective assessment and lacks objectivity.

A promising solution to the above problem is transfer learning.
Standard transfer learning includes two steps: (1) pretraining on a
large-scale dataset for learning general knowledge and (2) fine-tuning
on a target dataset for learning domain-specific knowledge. A re-
cent from Omerustaoglu et al. (2020) found that loading the CNNs
pretrained on ImageNet and fine-tuning them on the driver fatigue
detection task is beneficial. In addition to deep models for image
classification, transferring deep models pre-trained on EEG classifica-
tion (Bigdely-Shamlo et al., 2016), face emotion recognition (Ben et al.,
2021), or vehicle trajectory prediction (Xing et al., 2020) tasks have
great potential to enable the deep model to learn semantic feature
representations with a limited training set. However, there are several
points that need additional attention when employing transfer learning.
First, public available pretrained CNNs are usually deep and large,
while the driver fatigue detection dataset sizes are usually quite small.
Fine-tuning large models on a small dataset has the potential of the
‘‘catastrophic forgetting’’ of learned knowledge from pretraining due to
severe over-fitting. Besides, training samples of driver fatigue detection
dataset are usually very different compared to images in general image
classification dataset. The domain gap between the pretraining dataset
and the downstream dataset needs to be taken into consideration.
Introducing domain adaptation (Wang and Deng, 2018) techniques can
possibly address this issue.

In addition, recent advances and success of multi-modal
self-supervised learning (Arandjelovic and Zisserman, 2017; Korbar
et al., 2018; Patrick et al., 2020) implies the potential of learning
fatigue feature relationships from large-scale unlabeled vehicle record
data and in-vehicle videos. From another perspective, transfer learn-
ing and self-supervised learning can also be regarded as introducing
prior knowledge from supernumerary data, and consequently alleviate
the limitation of the training set size on the generalization ability.
Therefore, when encountering the lack of large-scale data, introduc-
ing transfer learning and multi-modal self-supervised learning are

promising future research directions for driver fatigue detection.
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Moreover, privacy issues need to be taken into consideration for
hese computer-vision-based approaches. Most existing approaches pri-
arily focus on improving driver fatigue detection performance, but

ery few of them have considered the privacy issue. For example, model
ompression via knowledge distillation can be applied to make the deep
odels more computationally efficient. If fatigue detection model are

cale down to proper size while maintaining high performance, it can
e deployed locally on in-car devices, without any communication with
ervers through the Internet.

. Conclusion

Effective fatigue feature extraction is the key point in fatigue de-
ection. However, differences in fatigue characteristics produced by
ifferent subjects and different driving environments limit the gener-
lity of single type of fatigue feature. In this review, we studied and
nalyzed the advantages and disadvantages of various fatigue detection
ethods, which show that RGB-D camera and deep learning are two
romising directions for future research. Multi-source data from a RGB-
camera contains valuable information to ensure the effectiveness of

atigue detection. This can be boosted by deep learning technologies
hich capture various observable and latent fatigue characteristics.
herefore, we expect using RGB-D camera and deep learning technol-
gy simultaneously will be the potential new developing trend. We
ndertook some baseline experiments in this direction, which verify
he advantages of these two technologies. The experiments also demon-
trates that information fusion technology can significantly decrease the
ependence on the specific single fatigue features. In general, the above
hree techniques are worthwhile of further investigation for fatigue
etection, which will effectively promote robustness and reliability on
he task.
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