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Abstract

We aim to develop a robust yet flexible visual foundation
model for Earth observation. It should possess strong capa-
bilities in recognizing and localizing diverse visual targets
while providing compatibility with various input-output in-
terfaces required across different task scenarios. Current
systems cannot meet these requirements, as they typically
utilize task-specific architecture trained on narrow data do-
mains with limited semantic coverage. Our study addresses
these limitations from two aspects: data and modeling. We
first introduce an automatic data engine that enjoys signif-
icantly better scalability compared to previous human an-
notation or rule-based approaches. It has enabled us to
create the largest dataset of its kind to date, comprising
270K image-text-mask triplets covering an unprecedented
range of diverse semantic categories and attribute speci-
fications. Based on this data foundation, we further pro-
pose a task unification paradigm that centers around refer-
ring expression segmentation. It effectively handles a wide
range of vision-centric perception tasks, including classi-
fication, detection, segmentation, grounding, etc, using a
single model without any task-specific heads. Combining
these innovations on data and modeling, we present Re-
moteSAM, a foundation model that establishes new SoTA on
several earth observation perception benchmarks, outper-
forming other foundation models such as Falcon, GeoChat,
and LHRS-Bot with significantly higher efficiency. Models
and data are publicly available at https://github.
com/1e12Leon/RemoteSAM .

1. Introduction

Advances in AI have fundamentally transformed Earth ob-
servation paradigms [62]. Strong visual perception mod-
els are driving breakthroughs across diverse applications,
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Figure 1. Comparison of various foundation models for Earth ob-
servation [17, 25, 50, 59, 76]. Blue, yellow, and green represent
pixel-level, region-level, and image-level tasks, respectively. Our
RemoteSAM is competitive with other models on most datasets
and performs significantly better on pixel-level tasks.

such as urban development [8], agriculture [63], disaster
management [1], and beyond. As these tasks often involve
distinct input-output interfaces, they are typically handled
individually by specialized models. To effectively man-
age this heterogeneity, we are interested in developing a
foundational model [2, 82] that unifies multiple perception
tasks. Such a model would conveniently accommodate var-
ied application scenarios and effectively integrate knowl-
edge learned across different tasks and domains.

Current attempts at task unification mainly fall into two
paradigms, as represented in Fig. 2. Methods based on task-
specific heads (e.g., Embedding Fields [4], RingMo [59],
ScaleMAE [53], and various extensions of RemoteCLIP
models [32, 38, 85] ) integrate general-purpose encoders
with specialized decoders tailored to individual downstream
tasks. However, the knowledge sharing between differ-

https://github.com/1e12Leon/RemoteSAM
https://github.com/1e12Leon/RemoteSAM
https://arxiv.org/abs/2505.18022v3
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Figure 2. Comparison of different foundation models of remote sensing. (a) Task-specific head methods [14, 33]. (b) Text-based unification
approaches [25, 76]. (c) Our proposed referring segmentation-based paradigm, RemoteSAM. It is a more unified architecture with fewer
parameters, achieving enhanced pixel-level understanding performance.

ent task heads is inherently limited, and it necessitates
task-specific fine-tuning whenever new objectives emerge.
Other methods, exemplified by Falcon [76], GeoChat [25],
employs text-based task unification with language mod-
els [9, 10, 68]. Although achieving good performance
in image-level (e.g., scene classification) and region-level
tasks (e.g., object detection), such approaches exhibit in-
trinsic limitations in pixel-level prediction tasks, as natural
language is not suitable for representing dense pixel-level
outputs.

These limitations motivate us to design a flexible foun-
dation model architecture capable of seamlessly support-
ing heterogeneous input-output interfaces across multiple
tasks and granularities. Our proposed model operates at the
fundamental pixel-level granularity, which acts as the most
fundamental and indivisible output unit, enabling seamless
upward compatibility to region-level and image-level tasks.
Additionally, to facilitate convenient adaptation, the model
integrates natural language understanding capabilities. This
approach resembles the Referring Expression Segmentation
(RES) [11, 19, 24, 71] task, where a model generates a
pixel-level map from the input image conditioned on a text
prompt.

In this paper, we present RemoteSAM, a vision foun-
dation model built upon a novel architectural paradigm
centered on RES. Our model leverages the dense pixel-
level outputs inherent in RES, effectively converting these
outputs into various formats required by other vision-
centric tasks. Unlike existing VLM-based foundation mod-
els such as Falcon [76], LHRS-Bot [50], EarthGPT [83],
and GeoChat [25], our RemoteSAM seamlessly supports
pixel-level (e.g., segmentation), region-level (e.g., ground-
ing), and image-level (e.g., counting) tasks within a uni-
fied architecture. Furthermore, by eliminating the large
LLM backbone—which contributes minimally to visual
perception—RemoteSAM achieves significant parameter

efficiency, enabling it to efficiently process high-resolution
remote sensing data.

To equip RemoteSAM with robust semantic understand-
ing capabilities, an RES dataset with extensive semantic
coverage is necessary. However, existing datasets [43, 79]
suffer from limited categorical diversity, restricted attribute
variation, and overly templated expressions. To over-
come these limitations, we construct a semantically diverse
dataset using a scalable automated data curation pipeline.
Observing that recent VLMs [73] demonstrate strong image
comprehension abilities, we leverage them to extract rich
semantic information from remote sensing imagery, gener-
ating referring expressions with broad linguistic diversity.
Through iterative pseudo-label refinement utilizing mixed
teacher models, we create a comprehensive dataset contain-
ing 270K Image-Text-Mask triplets, named RemoteSAM-
270K. It is characterized by two critical dimensions: 1) ex-
tensive category Scope, encompassing diverse and preva-
lent remote sensing targets; and 2) multifaceted attribute
completeness, employing linguistically varied expressions
to describe detailed object attributes such as colors, states,
spatial relations, and other distinctive visual-semantic char-
acteristics.

To quantitatively validate the semantic coverage of re-
mote sensing datasets, we further establish a hierarchical
remote sensing semantic vocabulary, named RSVocab-1K,
comprising 1K prevalent object categories. The qualitative
results based on RSVocab-1K validate that RemoteSAM-
270K’s referring expressions possess a diverse range of cat-
egory completeness and attribute expressiveness. Benefit-
ing from our high-quality dataset, the model achieves su-
perior adaptability to more unseen categories and datasets.
We also conduct holistic evaluations to measure the perfor-
mance of RemoteSAM across multiple downstream visual-
centric tasks of remote sensing. The experiment re-
sult demonstrates that RemoteSAM effectively addresses



the persistent performance gap of conventional foundation
models in fine-grained pixel-wise prediction tasks with an
order-of-magnitude smaller parameter count (from billions
to millions). For example, RemoteSAM achieves signif-
icant performance improvements on referring expression
segmentation, outperforming existing methods by more
than 3.0% on both RRSISD and RisBench benchmarks
in terms of mIoU. It also achieves state-of-the-art seman-
tic segmentation performance without fine-tuning, surpass-
ing vision foundation models, e.g., MA3E [33] and Scale-
MAE [54]. In addition, it yields a remarkable 35% accuracy
gain over GeoChat [25] in multi-label classification with a
parameter-efficient architecture.

The contributions of this paper to remote sensing are
summarized as follows:
• We propose a robust yet flexible visual foundation model

for Earth observation, RemoteSAM. To the best of our
knowledge, it is the first exploration and practice of refer-
ring segmentation-based task unification paradigm.

• We build a new referring expression dataset with an au-
tomatic data curation pipeline. It significantly exceeds
the scale of existing datasets and possesses rich semantic
coverage, benefiting from the advantages of VLMs.

• We construct a hierarchical semantic vocabulary. It can be
utilized to evaluate the semantic coverage of remote sens-
ing datasets, which helps measure their ability to adapt to
real-world applications.

• Holistic evaluations demonstrate that RemoteSAM’s su-
perior performance over existing approaches with promi-
nent fewer parameters. It demonstrates remarkable per-
formance across multiple visual-centric tasks, particu-
larly in pixel-level interpretation tasks.

2. Related Work

2.1. Remote Sensing Foundation Models

Recent advances in foundation models [2, 40, 73] have cat-
alyzed transformative progress across multiple computer vi-
sion domains. However, despite their success in processing
natural images, existing VFMs exhibit critical limitations
when applied to remote sensing imagery [39, 49, 77] —
a domain characterized by multimodal signals (e.g., multi-
spectral bands), fine-grained spatial details (e.g., sub-meter
resolutions), complex geospatial relationships, and tem-
poral dynamics across acquisition epochs. Therefore, re-
searchers have initiated systematic development of remote
sensing foundation models. Initially, RingMo [60] is the
first to construct a generative self-supervised framework.
Through multi-modal data augmentation and scene-aware
contrastive learning, it solves the problem of representa-
tion in complex remote sensing scenes. To capture tem-
poral evolution patterns, SatMAE [14] designs a tempo-
ral embedding encoding and cross-time mask reconstruc-

tion strategy, establishing a new paradigm for dynamic re-
mote sensing sequence modeling. To address the bottle-
neck in multi-scale representation, Scale-MAE [53] pro-
poses a scale-aware masking strategy and a hierarchical
decoder architecture, achieving scale-invariant learning of
geospatial features. BFM [5] constructs a large remote
sensing model with billions of parameters for the first time
through a mixture-of-experts architecture and distributed
training technology, verifying the feasibility of model scal-
ing. The recently proposed SatMAE++ [51] further inte-
grates multi-resolution pre-training and a convolutional up-
sampling module, achieving hierarchical fusion of cross-
scale features, thereby integrating multi-scale information
and enhancing the modeling capability of remote sens-
ing images. Inspired by MiniGPT-4 [88], GeoChat [25]
achieves the ability of visual grounding by utilizing a novel
multimodal instruction dataset. LHRS-Bot [50] creates
LHRS-Instruct, using globally available remote sensing im-
ages and corresponding OpenStreetMap features to exhibit
a profound comprehension of RS images.

2.2. Remote Sensing Referring Segmentation

Referring Image Segmentation [11, 24] aims to segment
specific objects from natural images utilizing natural lan-
guage descriptions. Existing natural image segmentation
methods are difficult to apply directly to remote sensing im-
ages. LGCE [79] defines the Referring Remote Sensing
Image Segmentation (RRSIS) task and provides the Ref-
SegRS dataset. It also presents a language-guided cross-
scale enhancement module designed to improve small ob-
ject segmentation by integrating multi-scale visual and lin-
guistic features. However, the limited data scale con-
strains LGCE’s performance with complex data. Conse-
quently, RMSIN [43] proposed the RRSIS-D dataset and
addresses the diverse scales and orientations of objects
in remote sensing images through intra-scale and cross-
scale interaction modules as well as adaptive rotated con-
volution. To overcome the limitations of current RRSIS
datasets—small size, single spatial resolution, and sparse
object samples—CroBIM [17] introduces RISBench, offer-
ing more comprehensive and challenging data. They also
design a cross-modal bidirectional interaction model with
context-aware prompt modulation, which enhances seg-
mentation performance in complex remote sensing back-
grounds. Considering that existing RRSIS methods typi-
cally employ a simple and direct image-text alignment ap-
proach, neglecting the fine-grained relationships between
images and text descriptions, FIANet [27] proposes fine-
grained image-text alignment and text-aware multi-scale
enhancement modules. These modules improve the seg-
mentation of targets in complex remote sensing scenes.
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3. RemoteSAM-270K Dataset
3.1. Improving Semantic Coverage of Data
Existing referring remote sensing image segmentation
datasets exhibit limited semantic coverage, failing to sup-
port a foundation model’s strong capabilities. To address
this gap, we propose RemoteSAM-270K, a large-scale re-
ferring expression segmentation dataset that expands cate-
gory coverage and attribute diversity for rich semantic cov-
erage.

3.1.1. Category Expansion
As shown in Fig. 3, we propose to enrich the category com-
pleteness from existing remote sensing datasets. Specifi-
cally, we follow the steps outlined below to generate pixel-
wise annotations.

Datasets Integration: We collect diverse remote sens-
ing datasets (e.g., iSAID [70], LoveDA [67], DOTA [72],
HRRSD [84]) and standardize their formats. If the dataset
is region-level, such as HRRSD [84], DOTA [72], we em-
ploy the code of SAMRS [65] to generate corresponding
instance-level masks via their detection annotations.

Triplets Generation: We construct image-text-mask
triplets for referring segmentation through three distinct
data generation strategies, adhering to the generalized re-
ferring expression segmentation paradigm in benchmarks
like G-RefCOCO [37] and RefZOM [19]: (1) “One-to-
One”: Directly integrate existing referring segmentation
annotations from RefSegRS [79], RRSISD [43], and Ris-
Bench [17]. (2) “One-to-Many”: Generate referring expres-
sions following the template “{category} in the image.” and

decompose original segmentation masks into class-specific
sub-masks. Each sub-mask aggregates all instances belong-
ing to its corresponding category. (3) “One-to-Zero”: Cre-
ate null masks (all-zero matrices) paired with textual de-
scriptions of categories explicitly absent from the image.
This type of sample can effectively prevent the model from
generating masks when the expressions refer to categories
not present in the image.

3.1.2. Attribute Expansion
Expressions with diverse attributes and flexible structures
facilitate the model’s capacity to learn rich semantic rep-
resentations [6]. To achieve this objective, we integrate
an automatic referring expression generation method with
a semi-supervised Mixed-Teacher framework, producing
high-quality Image-Text-Mask triplets enriched with de-
tailed attributes.

Expressions Creation: Inspired by the Pyramid of Cap-
tions (PoCa) method [6], we split images into multiple local
patches to expand the original remote sensing datasets (e.g.,
DOTA [72], HRRSD [84]). Then, we employ Qwen2-VL-
72B-Instruct [73] with the prompt “Describe all of your ob-
servations in this image as comprehensively as possible.” to
generate attribute-enriched captions. However, these cap-
tions tend to focus on the information of the whole im-
age rather than on a specific object. They cannot be di-
rectly utilized as referring expressions. Therefore, we de-
sign prompts (shown in Supplymentary) to further parse
these captions into multiple descriptions, each containing
only a single category target that has relevant referring in-
formation.



Table 1. Comparison of different referring remote sensing seg-
mentation datasets. “Generalized”: contains multi-target, no-
target, and single-target expressions, “Cls”: Categories, “Attr”:
Attributes.

Dataset Generalized # Samples # Cls # Attr # Attr/Sample
RefSegRS [79] ✕ 4.4k 15 3 0.78
RRSIS-D [43] ✕ 17.4k 20 7 2.41
RISBench [17] ✕ 52.5k 26 8 2.45

RemoteSAM-270K ✓ 270K 297 16 3.17

Figure 4. Comparison of semantic coverage on ours and other
remote sensing referring image segmentation datasets.

Masks Production: After obtaining the expressions, we
also require a strategy for automatically generating masks.
To achieve this objective, we utilize a mixture of several
types of expert models (e.g., GroundedSAM2 [55], RM-
SIN [43], etc.) to generate pseudo-labels. Unfortunately,
even with multiple expert models, there are still a signif-
icant number of unreliable samples among the generated
pseudo-labels. Therefore, to ensure data quality, we em-
ploy SigLIP2 [61] to calculate the similarity between the
mask-related image regions and the corresponding expres-
sions, removing samples with low similarities. This process
is iterated, ultimately yields a set of attribute-rich triplets.

3.2. Data Analysis
We compare category and attribute distributions across
four existing remote sensing referring image segmentation
benchmarks. As illustrated in the Tab. 1, our RemoteSAM-
270K dataset contains over 270,000 triplets of image-text-
mask, spanning 297 categories and 16 types of fine-grained
attribute descriptions. Furthermore, RemoteSAM-270K is
the first generalized [19] remote sensing referring segmen-
tation dataset, which can also enhance the depth of remote
sensing referring segmentation research.

To facilitate the analysis of semantic coverage, we
build a remote sensing vocabulary named RSBocab-1K.
We integrate 1,000 fine-grained categories aligned with
USGS Land Cover1 and GB/T 21010-2017 remote sens-
ing object classification specifications. Then, we orga-

1https://www.usgs.gov/programs/gap-analysis-project/science/land-
cover
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nize these categories into three hierarchical levels. Follow-
ing RSVocab-1K, we visualize the category completeness
and attribute expressiveness utilizing t-SNE projection in
Fig. 4. The visualization reveals two critical advantages
of our RemoteSAM-270K: (1) superior category complete-
ness and (2) richer attribute expressiveness. This enhanced
comprehensiveness originates from our integration of cross-
domain remote sensing datasets combined with VLMs that
effectively mine latent semantic patterns.

In Fig. 5, we showcase the advantages of referring ex-
pressions generated by the VLMs. It is evident that the rule-
based generated expressions tend to have a more uniform
structure, sometimes leading to ambiguities. For instance,
the reference to “the yellow school bus on the right side” is
not clear. In contrast, the expressions generated by VLMs
include more detailed attribute descriptions and adhere to
a more flexible syntax, which can help the model to learn
more complex semantic information.

4. RemoteSAM
Pixel-level mask serves as the foundational computation
unit in vision tasks, ensuring native compatibility with
higher-level tasks at both region and image scales while
preserving maximum spatial precision. Motivated by this
insight, we build RemoteSAM through a unified task tran-
sition framework leveraging RES outputs through these
strategies, as presented in Fig. 6.

Formally, given a training dataset Dtrain =
{(Ik, Tk,Mk)}Nk=1 composed of N Image-Text-Mask
triplets, where each image Ik ∈ RH×W×3 is paired with
a referring expression Tk = {t1, . . . , tn} and its corre-
sponding binary ground-truth mask Mk ∈ {0, 1}H×W ,
RemoteSAM aims to predict a segmentation mask
M̂ for a query pair (I, T ) at inference. The predic-
tion is formulated as M̂ = Q(Fv(I),Ft(T )), where
Fv : RH×W×3 → RH′×W ′×D and Ft : {wi}ni=1 → RC

denote visual and textual encoders respectively, and Q
is a fusion-decoder that jointly reasons over cross-modal
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features to generate pixel-wise predictions. The model is
trained by minimizing a segmentation loss Lseg between M̂
and M .

Building upon the base prediction M̂ , we introduce a
multi-task conversion strategy that transforms M̂ into out-
puts for other vision tasks via task-specific functions {Ti :
M̂ → Yi}, where i denotes the ith task, Yi defines the out-
put space of task (e.g., bounding boxes for detection, class
probabilities for multi-label classification). Each task and
its specific implementation steps are as follows.

4.1. Pixel-level Tasks
Referring Segmentation: Referring expression segmenta-
tion aims to segment specific objects or regions in an image
via a free-form referring expression. This task serves as the
foundational task for RemoteSAM and can directly utilize
the model’s original output mask M̂ .

Semantic Segmentation: Since we can obtain segmen-
tation masks of any instance via generalized referring ex-
pressions, straightforwardly integrating all masks can pro-
duce a semantic segmentation result. Given a category set
C for the specific segmentation task, for each class c ∈ C
we generate referring expression tc = “All {c} in the image”
to acquire all the masks of this category:

M̂c = Q (Fv(I),Ft(tc))⊙ (P (c|I) ≥ τseg) , (1)

where M̂c ∈ {0, 1}H×W is the predicted mask, P (c|I) is
category confidence with τseg as threshold. Then, we can
iteratively process all categories through the referring seg-
mentation model, aggregating instance masks into semantic
segmentation maps.

4.2. Region-level Tasks
Visual Grounding: Visual Grounding can be regarded as
a type of “referring expression detection” task. There-
fore, we directly convert predicted segmentation masks

into bounding boxes via mask-to-bbox (M2B) [38] method
FM2B . Specifically, for each predicted referring mask
M̂ ∈ {0, 1}H×W , compute grounding bounding box B co-
ordinates:

B = FM2B(M̂) = [(minxi, min yi), (maxxj , max yj)] .
(2)

Object Detection: It shares conceptual similarities with
semantic segmentation in visual recognition tasks. The pri-
mary distinction lies in their annotation formats: region-
level bounding boxes and pixel-level masks. Therefore, se-
mantic segmentation masks can be converted into rectangu-
lar bounding boxes. However, the M2B strategy encounters
limitations when processing adjacent targets. Specifically,
the overlapping regions of neighboring masks tend to merge
during segmentation, resulting in a unified bounding box
that encapsulates multiple distinct objects. To prevent adja-
cent objects from merging, we employ EPOC [7] to detect
the objects’ contours and refine mask boundaries. Then, we
can utilize the M2B strategy (Eq. 2) to convert the semantic
segmentation outputs into multiple bounding boxes.

4.3. Image-level Tasks
Multi-Label Classification: Since semantic segmentation
maps indicate the existence of each category, intuitively,
they can be converted into classification results. Specifi-
cally, we compute confidence scores through pooling over
spatial-weighted probability maps of semantic segmenta-
tion outputs, followed by class-wise probability aggrega-
tion:

Sc = λ · 1

HW

∑
i,j

P (c|i, j)+ (1−λ) ·max
i,j

P (c|i, j), (3)

where λ denotes balance parameters of max and average
pooling, P (c|i, j) represents the normalized probability of
class c in position (i, j) of the input image.



Table 2. Comparison of semantic segmentation results on unseen
dataset with various open-vocabulary and referring segmentation
models.

Methods Publication Vaihingen UDD5 DeepGlobe
mIoU (%) mIoU (%) mIoU (%)

Open-vocabulary Models
MaskCLIP [86] ECCV22 24.7 32.4 13.2
SCLIP [66] arXiv22 28.4 38.7 7.0
GEM [3] CVPR24 24.7 41.2 4.7
ClearCLIP [26] ECCV24 27.3 41.8 5.7
SegEarth-OV [29] arXiv24 29.1 50.6 20.1
Referring Models
FIANet [27] TGRS24 1.1 2.4 47.8
RMSIN [43] CVPR24 2.2 1.7 47.9
RemoteSAM - 46.0 45.6 60.5
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Figure 7. Comparison of zero-shot classification on SATIN with
Grounded SAM2.

Then labels of class c are judged as positive when
their corresponding confidence score Sc exceeds confidence
threshold τcls (0.5 as default):

ymulti = {Sk ≥ τcls}. (4)

Image Classification: Confidence scores are obtained
in the same manner as multi-label classification, with the
distinction being that we select the class with the highest
confidence score:

yscene = argmax [S1, . . . , SC ] . (5)

Image Caption: When we possess object positions B,
categories ymulti, and numbers Nc of objects, it is possi-
ble to generate captions in a rule-based manner [38, 80].
Specifically, ymulti provides an overview of image cate-
gories, while Nc and spatial relationships from B yield finer
details.

Object Counting: As we can detect objects in the im-
age, counting the number of class ctarget can be easily per-
formed:

Nc =

V∑
i=1

I(ci = ctarget), (6)

where I denotes the indicator function, V is the total number
of detected bboxes, ci is the ith bbox’s category.

5. Experiments
In this section, we conducted comprehensive experiments
to evaluate the semantic coverage of RemoteSAM-270K
and the task unification of RemoteSAM. Semantic cover-
age evaluates the generalization performance of the model
trained on our dataset, including segmentation on unseen
categories and zero-shot classification. Task unification
evaluation is realized by testing the performance of vari-
ous downstream visual-centric tasks, including pixel-level,
region-level, and image-level. Additional experimental re-
sults are provided in the supplementary materials.

5.1. Evaluation Setup
5.1.1. Models
Our implementation built upon the RMSIN [43] architec-
ture with BERT [16] as the textual encoder and Swin-
Base [45] as the visual encoder. For downstream tasks, we
compared three categories of candidates: (1) Vision pre-
trained foundation models (VFMs): RingMo [59], Scale-
MAE [54], MA3E [33], et al; (2) Vision-language models
(VLMs): GeoChat [25], LHRS-Bot [50], Falcon [76], et
al; (3) Task-specific architectures: SegEarth-OV [29], Ge-
oGround [87], MGVLF [80], et al.

5.1.2. Datasets
We compared our approach against previous SOTA refer-
ring segmentation models across two large-scale datasets:
RRSISD [43] and RisBench [17]. The downstream evalu-
ation protocol spans five established benchmarks in remote
sensing: DOTA [72], DIOR [28], iSAID [70], Potsdam2,
and RSVG [80].

5.1.3. Training Settings.
The experimental configuration employed 8 × NVIDIA
GeForce RTX 4090 GPUs with image resolution fixed at
896×896. Training proceeds for 40 epochs using AdamW
optimization, initialized with a learning rate of 3e-5.

5.2. Evaluations of Semantic Coverage
In this section, we validated the semantic coverage of
RemoteSAM-270K. We believe that the improvement in se-
mantic coverage should lead to a qualitative enhancement in
model performance, which can be demonstrated through the
model’s generalization abilities.

Firstly, we evaluated our RemoteSAM on unseen
datasets, comparing it against several state-of-the-art open-
vocabulary segmentation methods and other referring seg-
mentation approaches, as illustrated in the Tab. 2. On the
Vaihingen dataset, RemoteSAM outperformed SegEarth-
OV by 16.9%, while other referring segmentation methods
demonstrated significantly lower accuracy. These results

2https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-
label-potsdam.aspx



Table 3. Comparison of referring expression segmentation results
on RRSISD and RisBench.

Methods Publication
RRSISD RisBench

oIoU(%) mIoU(%) oIoU(%) mIoU(%)

BRINet [20] CVPR20 69.88 49.65 48.73 42.91
LSCM [23] ECCV20 69.05 49.92 50.08 43.69
CMPC [22] CVPR20 69.22 49.24 50.24 43.82
CMPC+ [42] TPAMI21 70.13 50.12 53.98 46.73
LAVT [75] CVPR22 77.19 61.04 74.15 61.93
CroosVLT [12] TMM23 75.48 58.48 74.33 62.84
CARIS [44] MM23 77.17 62.12 75.10 65.79
LGCE [79] TGRS24 76.34 59.37 73.87 62.13
CroBIM [17] TGRS24 75.99 64.46 73.04 68.03
robust-ref-seg [71] TIP24 77.40 58.91 74.23 61.25
RMSIN [43] CVPR24 77.88 64.26 75.24 68.25
RS2-SAM2 [57] arxiv25 78.99 66.72 - -
RemoteSAM - 80.04 71.75 75.93 71.46

Table 4. Comparison of semantic segmentation results with vari-
ous vision foundation models.

Methods Publication
Pre-trained iSAID Potsdam

Data mIoU (%) mF1 (%)
SeCo [48] ICCV21 Sentinel-2 [52] 57.20 89.03
GASSL [74] NIPS21 MillionAID [46] 65.95 91.27
SatMAE [14] NIPS22 fMoW [13] 62.97 90.63
RingMo [59] TGRS22 About 2M [59] 67.20 91.27
RVSA [64] TGRS22 MillionAID [46] 64.49 -
SSL4EO [69] GRSM23 SSL4EO-S12 [69] 64.01 91.54
CACo [47] CVPR23 MillionAID [46] 64.32 91.35
SAMRS [65] NIPS23 MillionAID [46] 66.26 91.43
ScaleMAE [54] ICCV23 fMoW [13] 65.77 91.54
RSCoTr [31] TGRS24 ImageNet-22k [15] - 90.67
MA3E [33] ECCV24 MillionAID [46] 64.06 91.50
RemoteSAM - RemoteSAM-270K 64.72 91.80
RemoteSAM-FT - RemoteSAM-270K 67.01 93.54

indicate that our dataset effectively enhances the model’s
cross-domain generalization competence alongside demon-
strated open-set identification capacity.

To further validate the enhancement of category diver-
sity in our dataset, we also conducted experiments on zero-
shot classification utilizing the SATIN [56] meta dataset, as
represented in Fig. 7. SATIN contains over 250 categories,
comprised of images with various resolutions and view-
points. The results indicate that the model trained on our
RemoteSAM-270K outperforms the Grounded SAM2 [55]
in recognition performance, which demonstrates that our
data can effectively support the model in recognizing a ma-
jority of common remote sensing categories.

5.3. Evaluations of Task Unification
We further conducted a series of Downstream evaluations
to measure the RemoteSAM’s performance on three cat-
egories of downstream vision-centric tasks: pixel-level,
region-level, and image-level tasks. Due to space limita-
tions, we presented semantic segmentation, visual localiza-
tion, multi-label classification, and object counting as the
corresponding tasks for evaluation.

Table 5. Comparison of visual grounding performance with spe-
cialized and foundation models.

Methods Publication Parameters RSVG
AP50(%) mIoU(%)

Specialized Models
ZSGNet [58] ICCV19 140M 51.67 44.12
FAOA [34] CVPR20 150M 70.86 62.86
ResC [21] CVPR21 150M 72.71 64.24
LBYL-Net [35] TIP22 155M 73.78 65.92
TransVG [30] NIPS21 136M 72.41 63.56
VLTVG [78] CVPR22 155M 75.79 66.32
MGVLF [80] TGRS23 136M 76.78 68.04
GeoGround [87] arxiv24 7B 77.73 -
Foundation Models
MiniGPT-v2 [88] arXiv23 7B 46.64 -
Qwen-VL-Chat [73] arXiv23 7B 44.76 -
SkyEyeGPT [81] NIPS22 7B 70.50 -
LHRS-Bot [50] ECCV24 7B 73.45 -
Falcon [76] arXiv25 0.7B 56.87 -
RemoteSAM - 180M 74.36 65.07

Table 6. Comparison of multi-label classification results with var-
ious remote sensing foundation models.

Methods Publication Parameters DIOR DOTAv2
Acc Acc

MiniCPM-V [18] arXiv24 3B 0.08 0.10
MiniGPT-v2 [88] arXiv23 7B 0.16 0.11
Qwen-VL-Chat [73] arXiv23 7B 0.17 0.10
Sphinx [36] arXiv23 7B 0.19 0.13
LLaVA-1.5 [41] NIPS24 7B 0.35 0.19
RemoteCLIP [38] TGRS24 390M 0.59 0.46
GeoChat [25] CVPR24 7B 0.65 0.60
LHRS-Bot [50] ECCV24 7B 0.35 0.20
Falcon [76] arXiv25 7B 0.87 0.95
RemoteSAM - 180M 0.94 0.95

Performance on Referring Expression Segmentation.
As illustrated in Tab. 3, we evaluated referring segmenta-
tion performance on remote sensing imagery. The Remote-
SAM demonstrates substantial superiority over compara-
tive approaches. Specifically, it achieves 71.75% mIoU on
RRSISD - surpassing the SAM2-based architecture (RS2-
SAM2 [57]) by 5.03%. Our approach also establishes a new
state-of-the-art result on RisBench with 3.21% absolute per-
formance gain. This advancement primarily stems from the
extensive semantic coverage in our training dataset.

Performance on Semantic Segmentation. To validate
the performance of RemoteSAM on the semantic segmen-
tation task, we selected several vision pre-trained models
for comparison. As presented in Tab. 4, the results in-
dicate that our approach performs comparably to special-
ized vision backbone models without task-specific tuning
and even attains state-of-the-art accuracy on the Potsdam
dataset (91.80%). Moreover, further performance improve-
ments (67.01% and 93.54%) can be achieved by training the
model on the specific dataset.

Performance on Visual Grounding. Beyond pixel-
level tasks, our RemoteSAM also supports fine-grained
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Tenniscourt on the right.

4 tenniscourts

Tenniscourt in the image.

Baseballfield

Label Score

√ baseballfield 0.514
√ tenniscourt 0.509
√ vehicle 0.501
× trainstation 1.2e-14
× golffield 9.4e-15

There are many vehicles, 4 
tenniscourts, 2 baseballfields
in the image. 2 baseballfields
are distributed in the upper 

center. The lower left region 
contains 6 vehicles. 4 

tenniscourts are observed in 
the lower center.

Expressions:

Chimney with smoke.

2 chimneys

Chimney in the image.

Chimney

Label Score

√ chimney 0.546
× overpass 4.6e-14
× storagetank 2.1e-14
× bridge 1.6e-14
× baseballfield 9.3e-15

There are 2 chimneys in the 
image. The center region 

contains 2 chimneys.

Expressions:

Airplane with cyan fuselage.

3 airplanes

Airplane in the image.

Airplane

Label Score

√ airplane 0.509
× windmill 3.1e-13
× trainstation 1.4e-13
× vehicle 1.1e-13
× baseballfield 2.8e-14

This picture shows 3 airplanes. 
There are 2 airplanes in the 

middle left. The middle right 
region contains 1 airplane.

Expressions:

Score: 0.509

Score: 0.546

Score: 0.514

Figure 8. Inference examples of RemoteSAM on 8 visual-centric tasks.

Table 7. Comparison of object counting results with various re-
mote sensing foundation models.

Methods Publication Parameters DIOR DOTAv2
Acc Acc

MiniCPM-V [18] arXiv24 3B 0.426 0.260
MiniGPT-v2 [88] arXiv23 7B 0.429 0.248
Sphinx [36] arXiv23 7B 0.430 0.257
LLaVA-1.5 [41] NIPS24 7B 0.249 0.221
GeoChat [25] CVPR24 7B 0.453 0.240
LHRS-Bot [50] ECCV24 7B 0.455 0.244
RemoteSAM - 180M 0.620 0.409

region-level tasks. For example, we present the visual
grounding performance of RemoteSAM on the RSVG [80]
dataset, comparing it against specialized and foundation
models. As illustrated in Tab. 5, RemoteSAM performed
as accurately as specialized models. Compared to other
VLMs, our approach outperformed them significantly while
utilizing a substantially smaller number of parameters.

Performance on Multi-label Classification. We evalu-
ated the performance of RemoteSAM and VLMs on multi-
label classification, with the results presented in Tab. 6. In
the multi-label classification task, RemoteSAM achieved
accuracy rates of 94% and 95% on the DIOR and DOTA
datasets, surpassing GeoChat by 29% and 35%, respec-
tively. This improvement may stem from the model’s re-
markable capability to comprehend complex spatial rela-
tionships in remote sensing scenes compared to VLMs.

Performance on Object Counting. To further validate
the performance of RemoteSAM at the image level, we con-
ducted experiments on the object counting task. The task
requires the model’s ability to perceive and reason compo-
sitionally. As presented in Tab. 7, our RemoteSAM attained

accuracy rates of 62.0% and 40.9%, significantly outper-
forming other approaches such as LHRS-Bot.

The above results demonstrate that our referring
segmentation-centered visual unification paradigm achieves
remarkable performance across pixel-level, region-level,
and image-level tasks. It highlights RemoteSAM’s ability
to handle complex remote sensing tasks. More importantly,
RemoteSAM has a significantly smaller number of param-
eters compared to other large-scale vision-language models
and does not require task-specific decoders, enabling it to
efficiently process high-resolution remote sensing images.

5.4. Further Analysis

We presented a qualitative analysis of RemoteSAM across
eight visual tasks in Fig. 8. Overall, RemoteSAM success-
fully translates the results of referring expression segmen-
tation into outputs required for various other visual-centric
tasks with precision, ranging from pixel-level to image-
level. From a variety of examples, it is evident that Re-
moteSAM is capable of (1) localizing the boundaries of
specified targets accurately (referring segmentation, seman-
tic segmentation); (2) analyzing the relationships between
objects in images (object detection, visual grounding); and
(3) understanding the global contextual information in im-
ages (counting, classification, captioning). Specifically, in
addition to locating objects via attributes such as location
(first row), RemoteSAM also comprehends status informa-
tion. For example, in the second row, it identifies a chimney
that is smoking. Moreover, when provided with a gener-
alized ‘one-to-many’ expression (e.g., “Airplane in the im-
age.”), RemoteSAM can further execute additional visual
tasks.



6. Conclusion
In this work, we present RemoteSAM, a unified visual
foundation model for Earth observation that addresses
the critical pixel-level limitations of existing remote sens-
ing foundation models through a referring segmentation-
based paradigm. By developing an automated data cura-
tion pipeline leveraging VLMs and multi-teacher localiza-
tion, we construct the largest referring expression segmen-
tation dataset, RemoteSAM-270K (270K image-text-mask
triplets), with significant semantic diversity spanning 297
categories and 16 attributes. We also build a hierarchical
semantic vocabulary to evaluate the semantic coverage of
remote sensing datasets. Extensive evaluations demonstrate
RemoteSAM’s superiority in handling classification, detec-
tion, segmentation, and grounding with significant parame-
ter efficiency. Our work demonstrates that segmentation-
centric architectures can serve as unified backbones for
multimodal Earth observation intelligence.
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Appendix

A. Quantitative comparison results for remaining tasks

In this section, we present the performance of RemoteSAM for remaining tasks, including Referring Segmentation (c.f.
Tab. 8-Tab. 10), Image Caption (c.f. Tab. 11) and Object Detection (c.f. Tab. 12-Tab. 13). Detailed comparisons of Complex
Scenes Classification task in SATIN meta dataset are also depicted (c.f. Fig. 9-Fig. 13).

As shown in Tables 8 to 10, RemoteSAM demonstrates exceptional performance on Referring Segmentation tasks,
achieving top results across nearly all evaluated metrics on the three datasets, with only minor deviations in a few cases. For
Image Caption task in Tab. 11, our rule-based captioning strategy attains a competitive CIDEr score of 12.370 on the UCM-
Captions dataset compared to generic foundation models. Furthermore, RemoteSAM also excels in Object Detection tasks,
achieving AP50 scores of 62.74% and 34.41% on the DIOR and iSAID datasets, respectively, surpassing other foundation
models. Besides, we also present category-level comparisons between RemoteSAM and GroundedSAM2, which strongly
evidences that scaled semantic coverage does translate to improved generalization capability.

Table 8. Detailed comparison of Referring Segmentation performance on RisBench.

Methods Publication RisBench
Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 oIoU(%) mIoU(%)

BRINet CVPR20 52.87 45.39 38.64 30.79 11.86 48.73 42.91
LSCM ECCV20 55.26 47.14 40.10 33.29 13.91 50.08 43.69
CMPC CVPR20 55.17 47.84 40.28 32.87 14.55 50.24 43.82
CMPC+ TPAMI21 58.02 49.00 42.53 35.26 17.88 53.98 46.73
LAVT CVPR22 69.40 63.66 56.10 44.95 25.21 74.15 61.93
CroosVLT TMM23 70.62 65.05 57.40 45.80 26.10 74.33 62.84
CARIS MM23 73.94 68.93 62.08 50.31 29.08 75.10 65.79
LGCE TGRS24 69.64 64.07 56.26 44.92 25.74 73.87 62.13
CroBIM TGRS24 77.55 72.83 66.38 55.93 34.07 73.04 69.33
robust-ref-seg TIP24 69.15 63.24 55.33 43.27 24.20 74.23 61.25
RMSIN CVPR24 76.32 71.53 64.83 54.2 33.76 75.24 68.25
RemoteSAM - 79.16 74.24 67.74 58.09 38.80 75.93 71.46

Table 9. Detailed comparison of Referring Segmentation performance on RRSISD.

Methods Publication RRSISD
Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 oIoU(%) mIoU(%)

BRINet CVPR20 56.90 48.77 39.12 27.03 8.73 69.88 49.65
LSCM ECCV20 56.02 46.25 37.7 25.28 8.27 69.05 49.92
CMPC CVPR20 55.83 47.40 36.94 25.45 9.19 69.22 49.24
CMPC+ TPAMI21 57.95 48.31 37.61 24.33 7.94 70.13 50.12
LAVT CVPR22 69.52 63.63 53.29 42.55 24.53 77.19 61.04
CroosVLT TMM23 66.42 59.41 49.76 38.67 23.30 75.48 58.48
CARIS MM23 71.50 63.52 52.92 40.94 23.90 77.17 62.12
LGCE TGRS24 67.65 61.53 51.45 39.62 23.33 76.34 59.37
CroBIM TGRS24 74.58 67.57 55.59 41.63 23.56 75.99 64.46
robust-ref-seg TIP24 66.59 59.58 49.93 38.72 23.30 77.40 58.91
RMSIN CVPR24 74.69 68.40 56.54 42.95 24.76 77.88 64.26
RS2-SAM2 arXiv25 77.56 72.34 61.76 47.92 29.73 78.99 66.72
RemoteSAM - 84.46 78.45 66.25 49.32 29.62 80.04 71.75



Table 10. Detailed comparison of Referring Segmentation performance on RefSegRS.

Methods Publication RefSegRS
Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 oIoU(%) mIoU(%)

BRINet CVPR20 22.56 15.74 9.85 3.52 0.5 60.16 32.87
LAVT CVPR22 71.44 57.40 32.14 15.41 4.51 76.46 57.74
LGCE TGRS24 73.75 61.14 39.46 16.02 5.45 76.81 59.96
CroBIM TGRS24 75.89 61.42 34.07 12.99 2.75 72.33 59.77
RMSIN CVPR24 68.63 52.61 26.47 10.13 1.82 71.46 55.71
RemoteSAM - 79.69 70.89 54.93 24.11 5.01 75.49 65.79

Table 11. Comparison of zero-shot Image Caption performance with Foundation Models.

Methods Publication UCM-Captions
CIDEr

MiniCPM-V arXiv24 0.000
MiniGPT-v2 arXiv23 16.282
LLaVa-1.5 NIPS24 0.004
Qwen-VL-Chat arXiv23 12.992
Florence-2-L CVPR24 13.844
Sphinx arXiv23 0.000
Geochat CVPR24 0.288
LHRS-Bot ECCV24 8.365
RemoteSAM - 12.370

Table 12. Comparison with Foundation Models of Object Detection with horizontal bounding box.

Methods Publication DIOR iSAID DOTAv2
AP50(%)

MiniGPT-v2 arXiv23 9.430 2.54 1.62
Florence-2-L CVPR24 26.98 16.67 12.25
Qwen-VL-chat arXiv23 15.81 4.29 2.97
Sphinx arXiv23 0.47 0.11 0.05
Falcon arXiv25 56.65 33.85 27.04
RemoteSAM - 62.74 34.41 20.17

Table 13. Object Detection performance with oriented bounding box of RemoteSAM.

Methods Publication DIOR iSAID DOTAv2
AP50(%)

Falcon arXiv25 55.29 28.83 23.29
RemoteSAM - 55.22 34.58 18.21
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Figure 9. Detailed comparison with GroundedSAM2 on UCM Multilabel in SATIN Complex Scenes Task
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Figure 10. Detailed comparison with GroundedSAM2 on AID Multilabel in SATIN Complex Scenes Task
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Figure 11. Detailed comparison with GroundedSAM2 on MultiScene in SATIN Complex Scenes Task
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Figure 12. Detailed comparison with GroundedSAM2 on MLRSNet in SATIN Complex Scenes Task (Part I)



0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

19
25

30
20

57

10

40

5 4

20

87
77

40

66

89

44

32

5

88 86

roundabout runway sand sea ships snow snowberg sparse
residential area

stadium swimming pool

0

20

40

60

80

100

A
cc

ur
ac

y(
%

)

51

7
16

24
33

59

47

30

13

64

19

90

36

88
78

13

60

47

23

94

tanks tennis court terrace track trail transmission
tower

trees water wetland wind turbine

GroundedSAM2 RemoteSAM

Figure 13. Detailed comparison with GroundedSAM2 on MLRSNet in SATIN Complex Scenes Task (Part II)



B. Qualitative results
In this section, we present the visualized results for each task as follows.

B.1. Task1: Referring Segmentation

a bigger 

baseballfield

chimney without 

smoke

the purple 

groundtrackfield

the smaller dam the black vehicle a small ship

airplane with cyan 

fuselage

the vehicle on the 

overpass

bridge on the right windmill on the top expressway-service-

area on the right

the lower harbor

ship on the left the right airplane the right harbor the middle 

baseballfield

trainstation on the 

left

windmill in the 

middle right

chimney in the 

middle

the upper overpass airplane in the 

center

the storagetank in 

the middle

golffield at the 

bottom

lower left 

tenniscourt

ship at the bottom

dam on the left chimney on the top overpass on the 

right

a basketballcourt in 

a lower region

tenniscourt on the 

upper right

the storagetank on 

the left

expressway-service-

area on the top

bridge on the top vehicle in the upper 

left

basketballcourt at 

the bottom

golffield on the 

right

Figure 14. Task1: Referring Segmentation



B.2. Task2: Semantic Segmentation
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Figure 15. Task2: Semantic Segmentation



B.3. Task3: Object Detection
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Figure 16. Task3: Object Detection



B.4. Task4: Object Counting
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Figure 17. Task4: Object Counting



B.5. Task5: Visual Grounding
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Figure 18. Task5: Visual Grounding



B.6. Task6: Multi-Label Classification

Label Score

√ basketballcourt 0.549
√ tenniscourt 0.522
× windmill 6.0e-14
× bridge 2.2e-14
× harbor 1.6e-14

Label Score

√ groundtrackfield 0.654
√ baseballfield 0.511
× vehicle 5.9e-14
× stadium 2.6e-14
× ship 1.9e-14

Label Score

√ airplane 0.522
√ vehicle 0.501
× stadium 8.7e-14
× windmill 2.0e-14
× ship 1.0e-14

Label Score

√ windmill 0.501
× golffield 2.8e-14
× overpass 1.5e-14
× airport 1.2e-14
× bridge 3.8e-15

Label Score

√ ship 0.539
√ harbor 0.517
× basketballcourt 5.3e-14
× overpass 1.7e-14
× dam 1.6e-14

Label Score

√ golffield 0.570
× harbor 2.1e-14
× bridge 2.0e-14
× overpass 1.8e-14
× airport 1.4e-14
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× airport 7.7e-14
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× airport 1.2e-13
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× bridge 3.1e-13
× golffield 2.7e-13
× ship 5.3e-14
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√ airport 0.511
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× storagetank 1.9e-14
× bridge 7.8e-15
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√ chimney 0.549
√ storagetank 0.502
× tenniscourt 6.4e-13
× vehicle 1.3e-13
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√ airplane 0.517
√ vehicle 0.505
× trainstation 1.7e-14
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× bridge 5.0e-15
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√ storagetank 0.510
× trainstation 5.8e-14
× harbor 2.8e-14
× dam 2.0e-14
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× vehicle 9.3e-14
× golffield 3.6e-14
× dam 1.7e-14
× windmill 7.8e-15
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√ harbor 0.555
× bridge 9.4e-14
× golffield 8.6e-15
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Label Score

√ bridge 0.572
√ harbor 0.509
√ vehicle 0.504
√ ship 0.503
× storagetank 6.1e-14

Label Score

√ airplane 0.533
√ vehicle 0.503
× ship 5.0e-14
× trainstation 1.4e-14
× windmill 2.9e-15

Label Score

√ harbor 0.525
√ ship 0.524
√ vehicle 0.501
× overpass 2.1e-14
× stadium 1.2e-14

Label Score

√ overpass 0.523
√ vehicle 0.502
× bridge 1.8e-14
× stadium 1.2e-14
× storagetank 6.6e-15

Label Score

√ baseballfield 0.517
√ tenniscourt 0.515
× vehicle 8.5e-14
× stadium 2.2e-14
× airport 9.4e-15

Figure 19. Task6: Multi-Label Classification



B.7. Task7: Image Classification

agricultural airplane bareland baseballfield bridge buildings

forest freeway industrial mobile home park parkinglot agricultural

center dense residential playground bridge bareland airplane

parking

railway station sparse residential stadium storagetank tenniscourt parkinglot

playground baseballfield agricultural dense residential square river

forest agricultural buildings industrial pond

Figure 20. Task7: Image Classification



B.8. Task8: Image Caption

The image includes 2 

basketballcourts. 2 

basketballcourts are 

distributed in the middle left.

This picture shows 2 

baseballfields, 

groundtrackfield. The upper 

center region has 1 

baseballfield. 1 baseballfield

is distributed in the middle 

right. In the lower center, 1 

groundtrackfield is present.

It contains 3 vehicles, 2 

bridges. The center region has 

1 vehicle, 2 bridges. The 

middle right region contains 2 

vehicles.

There are 2 chimneys in the 

image. The middle left region 

has 1 chimney. The middle 

right region contains 1 

chimney.

This picture shows vehicle, 

expressway-toll-station. 

There is 1 expressway-toll-

station in the center. There is 

1 vehicle in the lower left.

There are vehicle, airplane in 

the image. The upper right 

region contains 1 vehicle. The 

lower right region has 1 

airplane.

The image includes many 

ships. The upper center region 

has 1 ship. There is 1 ship in 

the upper right. In the middle 

right, 2 ships are present. 

There are 2 ships in the lower 

right.

There are 3 windmills in the 

image. There is 1 windmill in 

the upper center. In the lower 

left, 1 windmill is present. 

The lower right region 

contains 1 windmill.

The image includes 2 

windmills. The upper left 

region contains 1 windmill. 

There is 1 windmill in the 

lower center.

This image features 

trainstation, groundtrackfield. 

In the upper center, 1 

groundtrackfield is present. In 

the center, 1 trainstation is 

present.

This image features 2 ships. 1 

ship is observed in the upper 

left. 1 ship is distributed in 

the lower center.

The image includes many 

storagetanks. The upper 

center region has 1 

storagetank. 5 storagetanks

are observed in the upper 

right. The middle right region 

contains 3 storagetanks.

The image includes 4 

airplanes. 1 airplane is 

distributed in the upper right. 

In the center, 2 airplanes are 

present. 1 airplane is 

distributed in the middle right.

It contains vehicle, 2 

overpasss. 2 overpasss are 

observed in the center. In the 

middle right, 1 vehicle is 

present.

This image features 3 

vehicles, 3 airplanes. In the 

middle left, 1 airplane is 

present. 2 airplanes are 

distributed in the center. The 

middle right region contains 3 

vehicles.

It contains chimney. 1 

chimney is observed in the 

center.

There are baseballfield, 

basketballcourt in the image. 

1 baseballfield is distributed 

in the center. The middle right 

region contains 1 

basketballcourt.

The image includes dam. 1 

dam is distributed in the 

center.

It contains vehicle, 4 

overpasss. 1 overpass is 

distributed in the upper center. 

2 overpasss are observed in 

the center. The middle right 

region contains 1 vehicle. The 

lower center region contains 1 

overpass.

This image features 3 

storagetanks. In the center, 1 

storagetank is present. There 

is 1 storagetank in the middle 

right. 1 storagetank is 

observed in the lower center.

This image features airport. 

The center region has 1 

airport.

Figure 21. Task8: Image Caption



C. Ablation studies

Backbone Ablation: In Tab. 14, we investigate the effects of the text and image backbones through ablation experiments
conducted on the RRSISD dataset with RemoteSAM. The combination of BERT as the text encoder and Swin-Base as the
image encoder yields the highest performance, achieving an oIoU of 76.21% and an mIoU of 64.79%.

In contrast, substituting the text encoder with Transformer while retaining Swin-Base results in a slight decrease in per-
formance, with scores of 75.51% for oIoU and 63.00% for mIoU. This indicates that while Transformer remains competi-
tive, BERT provides a marginally better contextual representation for Referring Expression Segmentation. Moreover, when
ConvNext-B was employed as the image encoder, the performance further declined across both text encoders, suggesting that
ConvNext-B may not capture the spatial hierarchies as effectively as Swin-Base in the context.

As a result, we select BERT as the text encoder and Swin-Base as the image encoder for our model, furnishing a powerful
foundational computation unit for task unification.

Table 14. Ablation study on Different Backbone

Text Encoder Image Encoder RRSISD
oIoU(%) mIoU(%)

BERT Swin-B 76.21 64.79
Transformer Swin-B 75.51 63.00

BERT ConvNext-B 73.77 61.75
Transformer ConvNext-B 73.51 60.91

Effectiveness of CLIP Filtering: To validate the effectiveness of CLIP in filtering erroneous samples, we randomly
sample 100 images from the filtered set and manually annotate their masks. As shown in the Tab. 15, the mIoU between
the pseudo-labels and the manually annotated masks is 74.14%. This result indicates that our reserved pseudo-labels are
accurate.

Table 15. Effectiveness of CLIP Filtering Strategy

Metrics Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 oIoU(%) mIoU(%)
Pseudo-labels 85.00 79.00 71.00 55.00 34.00 66.37 74.14

Ablation of Multi-Label classification strategy : In Tab. 16, we explore different strategies for Multi-Label classification.
For mask-level strategy, a label is judged as positive when the area of its corresponding mask exceeds an area threshold(default
as 0). While for the prob-level strategy, labels are considered positive when their confidence scores obtained from pooling
surpass a threshold(default as 0.5). As shown in the Table, the prob-level strategy significantly outperforms the mask-level
approach on both datasets.

Table 16. Ablation of Multi-Label classification strategy

Strategy DIOR DOTAv2
Acc(%) Acc(%)

Mask-level 92.708 66.774
Prob-level 94.042 75.752

Balance factor analysis of classification: To ascertain the optimal balance factor values for classification, we conduct
experiments by varying the balance factor λ within the lass-wise probability aggregation function (Eq.3). The experimental
results are illustrated in Fig. 22. The results indicate that when λ is set to 0.5 and 1, Multi-Label Classification and Image
Classification achieved the highest accuracy, respectively. Therefore, we adopt this set of parameters for our final test results.
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Figure 22. Balance factor analysis of classification

Qualitative examples of EPOC refinement in Object Detection: As illustrated in Fig. 23, the refinement by EPOC
effectively resolves the limitations of the M2B strategy in processing adjacent targets.

DET

EPOC Contour w/o EPOC w/ EPOC EPOC Contour w/o EPOC w/ EPOC

Figure 23. Qualitative examples of EPOC refinement in Object Detection



D. Examples of RemoteSAM-270k

Some of the vehicles 

are in the two-way 

high-speed lane in the 

upper left of the image.

Viewed from the air, 

orange and grey roofed 

buildings are scattered 

along the road, forming 

an orderly urban layout.

The roads in the 

diagram appear as an 

intertwined network 

structure, mainly

composed of curved 

and straight roads, 

connecting different 

areas and buildings.

The extensive 

impervious surfaces in 

an urban area that 

prevent water 

infiltration.

Large four-engine jet 

with gray fuselage and

multiple vertical 

stabilizers.

The habor in the image.

Image Text Mask

Rectangular tennis 

court with a hard 

surface, marked with 

white boundary lines.

The swimming pool is

located towards the 

bottom of the image, 

exhibiting a distinctive 

irregular shape 

bordered by a 

surrounding deck and 

lawn.

The ship in the image.

The helicopter in the 

image.
The basketball field in 

the image.

The windmill situated

on the right side of the 

image is identifiable by 

its long blades that 

extend outward from its 

center.

Image Text Mask

In the parking lot area, 

cars are neatly arranged 

and may be used for 

logistics transportation 

or daily commuting.

The image shows 

multiple trailers, likely 

used for logistics or 

cargo storage.

Figure 24. Examples and categories of RemoteSAM-270k



E. Prompts Setting of Expressions Creation for Qwen2.5VL

Table 17. An Example implementation of extracting class-text pairs by prompting Qwen2.5VL.

Prompt for Extracting Class-Text Pairs

System Message:
Input:
• You will receive a detailed image caption of a remote sensing image.
Task Objective:
• Please extract all Object categories from the caption.
• Please generate a new concise description for each category.
Guidelines:
• Please focus on describing this single-class object and its attributes and spatial relation-ships.
• The caption must be brief, and no more than 20 words.
• The final output is in JSON format, with these categories as keys and corresponding descriptions as

values.

User:
Detailed Caption: This image is an aerial view of an airport terminal and its surroundings. There are
numerous gates around the terminal, each connected to the main building via jet bridges. The apron area
is extensive, with many aircraft parked at the gates...

Assistant:
Json Format Output:
{

“aircraft”: “Multiple aircraft parked on the apron.”
“jet bridges”: “Multiple jet bridges connecting gates to the terminal.”
...

}
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