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Abstract—The development of multi-modal learning for Un-
manned Aerial Vehicles (UAVs) typically relies on a large amount
of pixel-aligned multi-modal image data. However, existing
datasets face challenges such as limited modalities, high construc-
tion costs, and imprecise annotations. To this end, we propose a
synthetic multi-modal UAV-based multi-task dataset, UEMM-Air.
Specifically, we simulate various UAV flight scenarios and object
types using the Unreal Engine (UE). Then we design the UAV’s
flight logic to automatically collect data from different scenarios,
perspectives, and altitudes. Furthermore, we propose a novel
heuristic automatic annotation algorithm to generate accurate
object detection labels. Finally, we utilize labels to generate
text descriptions of images to make our UEMM-Air support
more cross-modality tasks. In total, our UEMM-Air consists of
120k pairs of images with 6 modalities and precise annotations.
Moreover, we conduct numerous experiments and establish new
benchmark results on our dataset. We also found that models
pre-trained on UEMM-Air exhibit better performance on down-
stream tasks compared to other similar datasets. The dataset
is publicly available (https://github.com/1e12Leon/UEMM-Air) to
support the research of multi-modal tasks on UAVs.

Index Terms—Unmanned Aerial Vehicles, Large Scale Dataset,
Multi-modal, Multi-task

I. INTRODUCTION

With the advancement of Unmanned Aerial Vehicles (UAV)
technology [1], [2], [3], [4], [5] and deep learning [6], [7],
vision perception tasks of UAV have shown great potential
in many fields such as urban monitoring, military reconnais-
sance and rescue [5], [8], [9], [10]. Unlike general vision
task [11], UAV tasks exhibit characteristics such as complex
backgrounds, varying scales, and small objects. Therefore,
models trained on general datasets [12], [13] can hardly be
directly applied to UAV platforms. To this end, many scholars
have constructed vision datasets from the perspective of UAV.
For example, VisDrone [14] and UAVDT [15] consider various
scenes, weather conditions, and environments, providing good
benchmarks for UAV-based Object Detection (UAV-OD) [16],
[17], [18], [19] tasks. SkyScenes [20] encompassing different
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Fig. 1. (a) Comparison of UEMM-Air and other UAV environmental
perception datasets. (b) Various UEMM-Air targeted tasks. Our stands out
as the largest in terms of data scale, featuring the most paired modality types
and the greatest variety of tasks among existing datasets.

layouts, weather, and daytime conditions with corresponding
dense annotations and viewpoint metadata for UAV-based Seg-
mentation (UAV-Seg) [21], [22]. The aforementioned datasets
make significant contributions to traditional UAV vision tasks.

However, with the development of multi-modal learn-
ing [23], [24], the above datasets are facing challenges such as
being single-modality and having insufficient data. Therefore,
the research communities are gradually moving from single-
modal to multi-modal tasks. For instance, DroneVehicle [25]
utilizes two image modalities: infrared and visible, with the
infrared modality enhancing detection accuracy in nighttime
scenes. However, due to the request for manual labeling and
aligning two modalities images, the dataset annotation cost
is relatively high. Although AU-AIR dataset [26] takes into
account the potential value of UAV parameters, it covers
relatively only a few scenes and its labeled samples have
some imprecise annotations. Drawbacks in above datasets
are adverse to model training. Furthermore, all the existing
datasets are unable to support alignment of vision and lan-
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(a) Scene and Category Distribution (b) Examples of Scenes and Perspectives   

… …

Captions

This picture was taken from 

theperspective of the 

SnappyRoads at aheight of 

25 and an angle of 45. 

There area total of 7 objects.

RGB Surface Normal Segmentation Depth

(c) Multiple Aligned Modalities

IMU Parameters

Height 25

Rotation 45

… …
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…… ……

Fig. 2. UEMM-Air is a multi-scene, multi-modal, and multi-perspective UAV-based perception dataset. (a) Scence (outer) and object category (inner)
distribution. (b) UEMM-Air features multiple scenes and various perspectives of the same view. (c) UEMM-Air encompasses 6 modalities: RGB, surface
normals, segmentation, depth, IMU parameters, and textual descriptions.

guage to perform zero-shot inference like the CLIP [27] model
in the field of UAVs. Similar to satellite remote sensing,
UAVs also need numerous vision-language applications such
as open-vocabulary object detection [28], referring image
segmentation [29], and multi-modal large language models
(MLLMs) [30], etc.

Motivated by the above observations, we construct a new
large-scale synthetic UAV environmental perception dataset,
UEMM-Air, to facilitate further research on the UAV field.
As represented in Fig. 1 and Fig. 2, we assign UEMM-Air
three significant characteristics. (1) Multi-modal: our dataset
contains six modalities, including visible, depth, segmenta-
tion, surface normals, UAV IMU parameters, and captions.
(2) Multi-task: our dataset is capable of supporting tasks
such as object detection, instance segmentation, image-text
contrastive learning, and referring image segmentation, etc.
(3) Multi-semantic: our dataset covers a variety of scenarios
and perspective, and has fine-grained category information.

To achieve these objectives, we first utilize the Unreal
Engine (UE) [31] and AirSim [32] framework to build var-
ious simulated scenarios for UAV flights. Subsequently, we
implement automatic UAV flight control and collect data
at different altitudes, scenes, and modalities. Furthermore,
we design an annotation algorithm to automatically generate
object detection labels. Finally, we generate text descriptions
for different cross-modal tasks according to existing detection
and segmentation annotations. We also implement represen-
tative and impressive methods to systematically investigate
the potential and challenges brought by UEMM-Air. The
experimental results demonstrate the research significance of
our dataset across various tasks.

The main contributions of this article are as follows:

• We propose a new synthetic UAV-based environmental
perception dataset, UEMM-Air. To the best of our knowl-
edge, it is the largest dataset in terms of existing data
scale, featuring the most paired modality types and

the highest variety of task types.
• We introduce a new heuristic algorithm for automatic data

annotation. Compared with labeling strategies in other
synthetic datasets, ours can provide more accurate anno-
tations by introducing segmentation and depth modalities
to enhance the identification of objects, especially in
addressing visually overlapped objects.

• We conduct experiments on multiple types of tasks in
the field of UAV, providing new benchmark results. Our
UEMM-Air expands the field of UAV environmental
perception from purely visual to multi-modal tasks.

The remainder of this paper is structured as follows. In
Section II, we review related literature on UAV environmental
perception and existing datasets. Section III introduces our
UEMM-Air. Specifically, Section III-A introduces the auto-
matic data collection methods we used. Then, in Section III-B,
we discuss the configurations and advantages of each modality.
We also outline the strategies for automatic annotation gen-
eration and the methods for cross-modal generation, respec-
tively in Sections III-C and Section III-D. Next, Section IV
validates the accuracy of our annotations and demonstrates
the benchmarks of our UEMM-Air across multiple tasks,
including object detection, instance segmentation, referring
segmentation, and cross-modal retrieval. Finally, Section V
presents our discussion of the advantages and limitations of
our UEMM-Air and concludes this paper.

II. RELATED WORK

A. UAV-based Environmental Perception

UAV-based environmental perception primarily involves two
tasks: object detection and semantic segmentation.

1) Object Detection: Due to the typically top-down per-
spective of UAVs and the relatively small scale of the objects,
general object detection methods [43], [44], [45], [46], [47]
tend to be not suitable for UAV-based Object Detection (UAV-
OD) tasks. The mainstream methods for UAV-based object
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TABLE I
COMPARISON OF DIFFERENT UAV-BASED DATASETS. ‘DET’: OBJECT DETECTION, ‘SEG’: SEMANTIC SEGMENTATION, ‘REF’: REFERRING IMAGE

SEGMENTATION, ‘CL’: IMAGE-TEXT CONTRASTIVE LEARNING. ‘MM’: MULTI-MODAL. ‘ANGLE’: UAV’S PAN&TILT VIEW ANGLE. ‘-’: NOT
APPLICABLE OR NOT EXPLICIT IN THEIR PAPERS.

Tasks Dataset Year MM # modalities # images # classes Size [px] Angle

Det

Stanford-Drone [33] 2016 % - - 7 1450×1080 90
UAVDT [15] 2018 % - 40376 3 1080×540 variable
VisDrone [14] 2018 % - 8629 10 1920×1080 variable
AU-AIR [26] 2020 ! 2 32823 8 1920×1080 45 to 90
Drone-Vehicle [34] 2022 ! 2 28k 5 640×512 90
HIT-UAV [35] 2023 ! 2 2898 4 640×512 30 to 90
RTDOD [36] 2023 ! 2 16192 10 1280×720 variable
State-Air [37] 2024 ! 2 2864 4 1280×720 variable

Seg

UAVid [38] 2020 % - 270 8 3840×2160 45
NWPU YRCC [39] 2020 % - 814 3 1600×640 variable
RescueNet [40] 2022 % - 4494 10 3000×4000 variable
AFID [41] 2023 % - 816 8 2560×1440 variable
SkyScenes [20] 2024 ! 2 33.6k 28 2160×1440 variable

Dets, Seg SynDrone [42] 2023 ! 3 60k 9 1920×1080 30,60,90
Dets, Seg, Ref, CL UEMM-Air (Ours) 2025 ! 6 120k 13 1920×1080 variable

detection primarily employ coarse-to-fine strategies [48], [49],
[50]. Initially, the detection process focuses on identifying
larger objects, while concurrently pinpointing dense subre-
gions containing small objects. These subregions are subse-
quently utilized as inputs for the model to refine detection
results. For example, a CZDetector [51] employed a density-
based cropping algorithm to identify regions with crowded
objects and then increased the size of those regions to enhance
the training dataset. Alternatively, [52] utilizes a Gaussian
mixture model to supervise the detector in generating object
clusters composed of focusing regions. To address limited
computing resources, methods were proposed to balance accu-
racy and efficiency. Typical examples include CEASC [53] and
SIFDAL [37]. The former adopted a plug-and-play detection
method with enhanced sparse convolution and an adaptive
mask scheme. The latter disentangled scale-invariant features
to boost detection accuracy and mildly reduce test inference
costs. Additionally, to adapt to the low computational power
conditions of UAVs, some researchers [54], [55] employed
compress techniques such as pruning and distillation.

2) Semantic Segmentation: Similar to object detection,
there are many semantic segmentation methods specifically
designed for UAV scenarios. High-resolution representation
learning plays a crucial role in UAV semantic segmentation
due to the ultra-high resolution and varying object scale of
UAV remote sensing imagery [56], [57], [58]. For exam-
ple, HRNet [59] was designed by a high-resolution network
that repeatedly exchanges semantic information across adja-
cent multi-resolution sub-networks. At the same time, many
lightweight methods were proposed to meet the real-time
application requirements of UAV platforms [60], [61], [62].
Literature [63] also proposed Semantics Guided Bottleneck
Network (SGBNet) based on BiSeNet and the Channel Pooled
Attention (CPA) mechanism to balance segmentation accuracy,

model size, and inference speed on the Land Cover Dataset.

B. UAV-based Environmental Perception Datasets

Many UAV-based environmental perception datasets provide
multi-class images and videos captured by UAVs. These
datasets are significant for promoting the research and de-
velopment of various computer vision tasks, including object
detection, object tracking, and scene understanding. We sum-
marized several commonly used UAV-based datasets in Table I.

Stanford-Drone [33] is a large-scale dataset containing
overhead images and videos of multi-class objects moving
and interacting at Stanford University. This dataset can be
used for learning and evaluating multi-object tracking, activity
understanding, and trajectory prediction.

UAVDT [15] has 80,000 representative frames which are
annotated with bounding boxes and 14 kinds of attributes
in various complex scenarios. It focuses on 3 specific com-
puter vision tasks: object detection, single-object tracking, and
multiple-object detection.

VisDrone [14] is a large-scale benchmark dataset in object
detection and tracking with various environment conditions
and camera viewpoints. It contains 10 categories objects of
frequent interest in drone applications and more than 2.5
million annotation bounding boxes.

AU-AIR [26] includes extracted frames meta-data, bound-
ing box annotations for traffic-related object categories, and
multi-modal flight sensor data. The dataset is captured at low
altitudes at the intersection.

Drone-Vehicle [34] offers a drone-based RGB-Infrared
cross-modality vehicle detection dataset and corresponding
precise annotations. This dataset covers multiple scenarios
and objects from day to night with three different angles and
heights.
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Fig. 3. Pipeline of our data construction. Step 1: We design the automatic flight logic of the UAV to collect images from different altitudes, perspectives, and
modalities. Step 2: We perform contour detection on the segmentation image to obtain object bounding boxes. To alleviate visually overlapped situations, we
introduce the depth information, where a significant change in depth typically indicates multiple objects. Step 3: We extract the objects’ categories, quantities,
and spatial relationships to generate captions for image-text contrastive learning and referring image segmentation.

HIT-UAV [35] is the first publicly available high-altitude
UAV-based infrared thermal dataset for object detection appli-
cations on UAVs. The dataset provides two types of bounding
box annotations (oriented and standard) to tackle the challenge
of overlapping object instances in aerial images.

RTDOD [36] is the first RGB-Thermal domain-incremental
object detection dataset designed specifically for UAVs. The
dataset covers a wide range of weather conditions and day-
to-night transitions, highlighting the complexity of real-world
scenarios.

State-Air [37] is an aerial dataset with multi-modal sensor
data collected in real-world outdoor environments. The dataset
concludes 2246 images of sunny days and 616 instances of
snowy ones with 4 categories: person, car, bus, and van.

UAVid [38] is a semantic segmentation dataset designed for
UAV semantic segmentation in complex urban scenes, featur-
ing on both static and moving object recognition. It provides
300 high-resolution oblique-view UAV images, labeled with 8
classes, and gives a diverse representation of objects with rich
scene context.

NWPU YRCC [39] is the first public UAV image dataset
containing 814 accurately annotated images for river ice
segmentation. It covers typical images of river ice in different
periods, with diverse appearances and captured from different
flight heights and views.

RescueNet [40] propose a high-resolution post-disaster
dataset for natural disaster damage assessment. It includes
detailed classification and semantic segmentation annotations,

enabling applications in building damage classification, road
segmentation, and future disaster assessment.

AFID [41] is a publicly available dataset of aerial and fluvial
images, featuring detailed semantic annotation from different
camera perspectives. It focuses on utilizing semantic segmen-
tation models to fulfill unmanned hydrologic data collection,
environmental inspection, and disaster warning tasks.

SkyScenes [20] is a synthetic dataset of densely annotated
aerial images captured from UAV perspectives, containing
33.6K images from different altitudes and pitch settings. It
provides pixel-level semantic, instance, and depth annotations,
and enables reproducing the same viewpoint under different
conditions.

SynDrone [42] proposes a multi-modal synthetic bench-
mark dataset containing both images and 3D data taken at
multiple flying heights. It includes 28 classes of pixel-level
labeling and object-level annotations for semantic segmenta-
tion and object detection.

III. UEMM-AIR

A. Scene Construction and Flight Control Logic

Previous UAV-based datasets are limited in scene diversity,
which tends to affect model generalization. Therefore, we
aim to construct a dataset with richer scenes to improve the
performance of the models. To be specific, we utilize Unreal
Engine [31] with CityBLD [64] plugin. It can create cities
of almost any size and style in a very short time to simulate
scenarios in the real world. We build several scenes including
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Fig. 4. We randomly sampled images from various scenes and visualized the
features extracted by the CLIP image encoder through T-SNE. The significant
differences in features across different scenes indicate that our dataset is
beneficial for enhancing the model’s domain generalization performance.

cities, parks, highways, etc. We also collect a total of 13
categories and more than hundreds of vehicle models.

We leverage Unreal Engine’s movement animation to simu-
late dynamic scenes in reality. Employing the traffic features of
Unreal Engine, we can flexibly design and construct various
complex road layouts, including city streets, highways, and
country roads. These layouts can precisely simulate real-world
terrain and traffic conditions, providing realistic infrastructure
for game scenes. Additionally, we can generate a wide variety
of vehicles in the virtual environment. These vehicles can
automatically navigate the generated roads based on predefined
traffic rules and behaviors. By setting paths and control param-
eters, the vehicles can simulate real traffic flow, obey traffic
signals, avoid pedestrians, and respond to traffic congestion,
thereby creating highly realistic dynamic traffic scenarios.

To collect data, we control the UAV to fly and take pictures
in Unreal Engine, as represented in Fig. 3 Step 1. Specifically,
we build an Unmanned Aerial Vehicle simulator using AirSim
and Pygame. When flying to a satisfactory shooting point, we
control the UAV to fly within a height range of 5 meters to 50
meters above the horizontal surface, taking a set of photos
every 5 meters up. The camera rotates from 0 degrees to
90 degrees by 5 degrees for each step. To obtain aligned
pictures of different modalities, our simulator temporarily
stops running when taking photos.

Ultimately, we built 8 different maps and collected a total
of 120k pairs of data. Each map has its own unique style,
incorporating various elements such as different lighting,
scenes, and weather conditions. As shown in Fig. 4, we
randomly select 1,000 images from each map and utilize CLIP
to extract image features for T-SNE visualization analysis.
The results indicate considerable feature differences among
different maps, providing rich domain representations for
model training.

B. Acquisition Setup

We adopt our camera sensor setup for the AirSim simulator
to ensure diversity in data. The acquisition pipeline equips the

UAV with several co-registered sensors. With the help of these
sensors, we collect 5 modalities: RGB, infrared, segmentation,
surface normal, and IMU parameters.

RGB Camera: It offers a resolution of 1920× 1080 pixels.
The vertical field of view (FoV) increases dynamically from
0◦ to 90◦, indicating that the viewing angle changes from a
horizontal to a top-down view. All RGB images are stored in
PNG format.

RGB images contain rich color, and spatial information,
facilitating better image understanding and object recognition.
The visual image is the most common modality in computer
vision tasks. However, in complex environments such as
nighttime, visual images alone may not perform well due to the
poor visibility and the resulting inability to effectively detect
objects.

Depth Camera: The depth camera has the same FoV, reso-
lution and storage format as the RGB camera. It interpolates
each pixel value from 0 to 255 according to the depth of the
distance from the camera plane. The white pixels show a depth
of more than 100 meters, while the black pixels indicate a
depth of 0 meters.

Depth images leverage pixels to represent the distance from
the object to the camera, reflecting the spatial shape and
structure of the photographed scene. Therefore, we utilize it
to address the issue of inaccurate annotations caused by over-
lapped visual information of the objects during the annotation
generation process. It can also be leveraged to deduce an
object’s height, convexity, and relative position, which aids
in multi-modal object objection.

Segmentation Camera: The segmentation camera maintains
the same FoV, resolution, and data format as the preceding
cameras. It generates distinct colors for pixels belonging to
different categories of objects to ensure accurate segmentation
of the scene.

The segmentation image divides the image into multiple re-
gions with similar attributes, providing pixel-level information
where each pixel is assigned to a precise category label. Be-
cause of the detailed segmentation information, this modality
can assist in the automatic generation of detection annotations.
Additionally, since segmentation images inherently contain
positional information, combining them with other modalities
for detection often leads to improved accuracy.

Surface Normal Camera: The Surface Normal Camera maps
the X, Y, and Z components of the surface normal to an RGB
range from 0 to 255. Due to the gradual changes in normal
direction, it is difficult to distinguish. Therefore, the contrast
of the normal camera images is set as 1.5 to more distinctly
delineate changes in the direction of the normals. This camera
saves its pictures in PNG format and has the same field of
view and resolution as the Scene Camera.

Surface normal images primarily capture the geometric
features and surface details of the target object. When fused
with RGB images or other modalities, they can compensate for
deficiencies in texture features. For example, in fine-grained
object detection, the texture features introduced by the surface
normal modality can help the model learn deeper fine-grained
information. Additionally, it reveals intricate surface details
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Fig. 5. Comparison of SynDrone and our UEMM-Air. Red and yellow bounding boxes indicate incorrect and correct labels, respectively. We provide two
viewpoints from one scene in UEMM-Air, where blue boxes indicate originally blocked objects in the other viewpoint. SynDrone has incorrect labels where
objects are visibly blocked, while UEMM-Air consistently demonstrates superior labeling accuracy, especially in challenging scenarios where objects are
partially obscured.

essential for generating precise 3D reconstruction surface
models.

IMU Parameters: IMU parameters encompass dynamic state
data, GPS information, flying altitude and timestamps. The
dynamic state parameters consist of attitude angle, linear ve-
locity, body angular velocity, linear acceleration, and collective
angular acceleration.

IMU parameters comprise real-time attitude details and
UAV position coordinates. In multimodal tasks, the current
flying altitude of the UAV can be utilized to assist in deter-
mining the scale information of the object. For example, the
current frame’s flight posture is beneficial for the model to
predict the next frame’s object location, especially in tasks
like video object detection or object tracking. Additionally,
the UAV’s GPS information can also be employed for post-
detection localization tasks.

C. Automatic Image Segmentation and Annotation

Most of the existing UAV-based datasets are manually
annotated. Manual image annotation faces challenges in terms
of accuracy and efficiency, especially when dealing with a
large number of labels or low-resolution images.

To avoid manual annotation, the SynDrone [65] dataset em-
ploys an automatic image labeling algorithm. They derive the
absolute coordinates of UAV and vehicles from Unreal Engine,
then obtain the bounding boxes of the objects by analyzing
their relative position. However, this strategy causes some
incorrect annotations where objects are visibly blocked but
their coordinates are still marked on the image, as illustrated
in Fig. 5.

In order to alleviate the problem of mislabeling in the
SynDrone dataset, we propose a heuristic automatic image an-
notation algorithm. It makes full use of semantic and distance
information from segmentation and depth images to avoid

labeling visually blocked objects and mislabeling overlapped
ones. Our approach is illustrated in Fig. 3.

Employing the AirSim simulator, we assign the same color
label to the same class of objects in the Unreal Engine
environment. For each class, we convert contour detection on
objects into bounding boxes and get the initial annotation.
However, this step cannot recognize objects of the same
category that are overlapped in the segmentation image and
will mark them as one object.

To avoid mislabeling visually overlapped objects, we uti-
lize depth images where pixel value represents the distance
from the object to the camera plane to perform a secondary
annotation. Intuitively, depth values mildly change on each
object and a depth value jump indicates multiple objects
existences. Therefore, overlapped objects can be correctly
identified through depth observation. We detect depth mu-
tations within segmented bounding boxes to confirm object
edges, adjusting labels accordingly.

Fig. 6 presents sample annotation results for comparing
our proposed algorithm with only utilizing segmentation in-
formation. It can be observed from Fig. 6 (a) that leveraging
segmentation information alone can’t effectively handle cases
of visual overlapped (as shown by the pink box). Our approach
can alleviate this issue by correctly distinguishing the two
vehicles within the pink box. Fig. 6 (b) shows the numerical
statistics of the annotations generated by the two methods.
It can be observed that our method successfully annotates
more objects, because our approach can distinguish overlapped
instances and correct the annotations accurately employing
depth information.

D. Cross-modality Generation

After collecting the 5 modalities mentioned in Section III-B,
we also need to generate the sixth modality: text. In this
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(a) Visualization comparison

Segmentation Only Ours

(b) Numerous Statistics 

Fig. 6. Visual (a) and Numerical (b) Comparison with only utilizing segmentation information. The pink box indicates visually overlapped objects and the
yellow box shows the corrected results. Owing to overlap rectification, our approach can generate more accurate annotations.

(a) Caption length of Image-Text Retrieval (b) Caption length of Referring Segmentation

Fig. 7. Distribution of captions length in our UEMM-Air.

paper, we categorize text into two types: global and local,
corresponding to the tasks of image-text contrastive learning
and referring image segmentation, respectively.

1) Image-text Contrastive Learning: In addition to visual
tasks like object detection and instance segmentation, we
also hope our UEMM-Air can support vision language tasks
to make UAV-based models perform zero-shot capability. In
Section III-C, we already generate accurate annotations with
object bounding boxes and fine-grained class names. However,
such annotations cannot be directly utilized on the text encoder
of CLIP. Therefore, we follow the B2C method from Remote-
CLIP [66] to transfer the bboxes into a set of natural language
captions. However, we notice that the captions generated by
RemoteCLIP only include the quantity and position of the
objects relative to the image, leading to insufficient semantic
information in the captions. To alleviate this issue, we propose
a new generation approach, as shown in Fig. 3. Specifically, we
combine the scene and UAV parameter annotations provided
by UEMM-Air to generate text descriptions that are more
relevant to the UAV context. In addition, we provide more
precise location information. Instead of being limited to the
center and edges of the image, we utilize multiple sentences
to comprehensively describe the distribution of the objects.

Ultimately, we generated 7 distinct captions for each image,
resulting in a total of 840,000 descriptions. We present a
visualization of the caption length distribution for our final
data, as represented in Fig. 7. It can be observed that the
caption length distribution shows a peak around 200, with
most lengths concentrated between 200-400. Beyond 400, the
frequency decreases, forming a long-tail pattern. In Fig. 8,
we also provide visualizations of word clouds and the top 20
keywords of our UEMM-Air. The words exclude stop words
like ”the”, ”is”, and others.

2) Referring Image Segmentation: As a prominent visual-
language task, referring image segmentation enables the de-
lineation of specific objects in the visual field through natural

(a) Word clouds of Image-Text Retrieval (b) Word frequency of Image-Text Retrieval

(d) Word frequency of Referring Segmentation(c) Word clouds of Referring Segmentation

Fig. 8. Word clouds and top 20 keywords of captions in our Dataset.

language descriptions. This capability is equally essential in
the domain of UAVs to facilitate cross-modal interactive tasks,
thereby advancing embodied intelligence in UAVs. There-
fore, similar to image-text contrastive learning, we propose
a method for generating textual descriptions for the referring
image segmentation task. By analyzing the spatial relation-
ships of the objects within the obtained segmentation labels,
we can automate the generation of the referring captions.

Unlike referring image segmentation tasks in general do-
mains, the UAV field often requires the segmentation of mul-
tiple objects rather than just one. For instance, it may involve
segmenting a series of cars along a street. Consequently, we
primarily generate descriptions in the following 3 categories:

• All objects of a specific class. e.g., All of the BoxTrucks
in the image.

• The spatial relationships of a particular object or certain
objects relative to the image. e.g., Van in the bottom-left
region of the image.

• The spatial relationships of a specific object relative to
other objects. e.g., The Van above the SUV in the image.

Finally, we generated 600,000 image-mask-text pairs. Addi-
tionally, we present the statistics on captions length and word
clouds in Fig. 7 and Fig. 8, respectively. Unlike the data
generated in image-text contrastive learning, the length of the
captions for referential tasks is shorter, as it does not require
a description of the global features of the image.

3) Visualizations of Cross-modality Generation: To validate
the accuracy of the generated captions, we randomly selected
samples for visualization. As shown in Fig. 9, the captions for
the image-text retrieval task accurately describe the number
and spatial relationships of the objects, as well as the UAV’s



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

(b) Referring Image Segmentation

It is taken at a height of 5 and 

an angle of 5. There are a total 

of 28 objects.

Sedans are distributed in the 

upper left area. Vans, SUVs are 

distributed in the right area.

(a) Image-Text Retrieval

The Motor nearby the SUV. The Pickup in the scene.

Fig. 9. The visualizations for the two types of cross-modal generation. (a) In the image-text retrieval task, the text describes the global information of the
image. (b) In the referring image segmentation task, the text focuses on describing the details of local objects.

TABLE II
THE RESULTS OF THE 5-FOLD CROSS-VALIDATION EXPERIMENT. FOLD

1-5 REPRESENT THE FIVE RANDOMLY PARTITIONED SUB-DATASETS.

Fold Train Valid AP50 AP75

1 1,2,3,4 5 63.9% 52.6%
2 1,3,4,5 4 62.6% 53.4%
3 1,2,4,5 3 63.1% 52.8%
4 1,2,3,5 2 62.3% 53.7%
5 2,3,4,5 1 64.3% 53.3%

height and angle information. The captions for the referring
image segmentation specifically describe the location of a
particular object and successfully generate the mask for the
object.

IV. BENCHMARK AND EXPERIMENTS

A. Experimental Setup

1) Benchmark Models: We adopted YOLOv11 [67], RT-
DETR [68] and D-FINE [69] as the general object detection
baseline models. In the multi-modal object detection exper-
iments, we designed a dual-path multi-modal detector with
mid-level feature fusion. We utilized YOLOv7-L [70] as the
base detector, with two separate backbone networks to extract
features from two modalities. We also designed a feature
fusion module that utilizes Coordinate Attention (CA) [71].
Specifically, we first directly concatenated the features of two
modalities and employed Coordinate Attention to fuse them
simultaneously in terms of channel and spatial information.
The fused features were then entered into the neck part of the
detector to complete the remaining detection tasks.

In image-text contrastive learning experiments, we em-
ployed OpenAI CLIP [27] and RemoteCLIP [66] as bench-
mark models. We selected four types of visual backbone
architecture for the two CLIP models, ranging from ResNet-
50, ViT-Base-16, ViT-Base-32, and ViT-Large-14. We utilized
the transformer architecture, consisting of 12 layers and 8
attention heads for text encoder. The maximum token sequence
length is set to 77. The InfoNCE [72] loss operates on the
[CLS] token produced by the image and text backbone.

In referring image segmentation experiments, we adopted
three SoTA transformer architecture models: LAVT [73],

TABLE III
UEMM-AIR TRANSFERABILITY VALIDATIONS. WE SELECTED

SYNDRONE DATASET FOR COMPARISON.

Method Fine-tuned Pre-trained AP50 AP75

YOLOv11 [67]
VisDrone SynDrone 25.6% 16.0%

UEMM-Air 28.3% 17.7%

UAV-DT SynDrone 85.4% 55.6%
UEMM-Air 86.2% 56.1%

FasterRCNN [44]
VisDrone SynDrone 5.1% 1.1%

UEMM-Air 5.5% 2.3%

UAV-DT SynDrone 48.0% 9.5%
UEMM-Air 53.8% 14.7%

RMSIN [74], RefSegformer [75]. Among them, RMSIN is
specially designed for remote sensing scenarios.

2) Training Settings: All detection and segmentation ex-
periments were conducted in Pytorch with a NVIDIA RTX
3090 GPU. During the model transferability verification, we
set the batch size to 16 and trained for 200 epochs. In other
object detection experiments, we froze the backbone network
of the detector and trained for 50 epochs with a batch size of
32. All detectors were trained using an Adam optimizer [76]
with a momentum of 0.937. The learning rate was initialized
as 0.001 with a cosine decay [77]. We fix random seed to 18
to ensure the experiment’s reproducibility.

The image-text contrastive learning experiments were
trained on an NVIDIA RTX 3090 GPU. The training process
was accelerated by employing the Adam optimizer [76]. The
learning rate was set to 7e-5, 4e-5, and 1e-4, respectively,
for ResNet-50, ViT-Base-32, and ViT-Large-14 models, and
the corresponding batch size was set to 256, 128, and 28,
respectively.

The referring image Segmentation experiments were de-
ployed in 4 × NVIDIA RTX 4090 GPUs. The initial learning
rate was set to 0.0003, with a batch size of 6 per GPU and the
Adam [76] optimizer. The training was conducted for a total
of 40 epochs. The input size of images was set to 480 × 480.

B. Evaluation on Automatic Annotation Algorithm

Considering that our labeling algorithm is auto-generated, it
is necessary to validate the reliability of the labels we generate.
In this section, we demonstrated the effectiveness of our labels
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Fig. 10. Comparison with Manual Annotations. Different colored boxes represent different categories. The generated annotations are basically consistent with
manual annotations. Furthermore, the generated labels exhibit better fidelity compared to manual labels.

TABLE IV
COMPARISON OF FINE-GRAINED OBJECT DETECTION RESULTS WITH VARIOUS DETECTORS.

Method Version Input Size mAP AP50 AP75 APS APM APL #Params (M). BFLOPs FPS (bs=1)

YOLOv11 [67]

n 640×640 50.8% 68.9% 54.9% 22.0% 80.6% 94.5% 2.6 6.3 263.2
s 640×640 56.3% 73.8% 61.5% 29.2% 84.4% 96.3% 9.4 21.3 212.8
m 640×640 57.0% 74.8% 62.3% 30.4% 84.6% 96.0% 20.0 67.7 185.2
l 640×640 58.6% 76.0% 64.6% 32.8% 85.5% 96.8% 25.3 86.6 158.7
x 640×640 60.0% 76.8% 66.1% 34.7% 86.5% 97.3% 56.8 194.5 94.3

RT-DETR [68] l 640×640 38.4% 60.3% 40.3% 11.0% 64.1% 84.7% 32.0 103.5 90.9
x 640×640 40.1% 73.7% 38.4% 15.7% 63.1% 82.4% 65.5 222.5 56.2

D-FINE [69]

n 640×640 63.5% 82.5% 68.7% 41.9% 86.3% 95.2% 7.1 3.7 44.1
s 640×640 71.8% 90.3% 78.0% 54.0% 89.8% 96.2% 24.9 10.2 38.8
m 640×640 73.2% 90.7% 78.8% 55.6% 91.4% 97.1% 56.4 19.2 31.4
l 640×640 74.3% 91.3% 80.0% 57.2% 91.8% 97.3% 90.7 30.7 23.1
x 640×640 75.8% 92.4% 81.8% 59.5% 92.5% 97.5% 61.55 202.2 18.8

TABLE V
COMPARISON OF SEGMENTATION RESULTS WITH VARIOUS METHODS.

Method Version Input Size mAP AP50 AP75

YOLOv11

n 640×640 31.4% 58.8% 30.2%
s 640×640 34.8% 64.3% 33.9%
m 640×640 37.7% 67.9% 37.1%
l 640×640 38.3% 68.6% 37.9%
x 640×640 39.1% 69.5% 38.9%

through cross-validation experiments and visual comparisons
with manual labels.

1) Verification of the Annotations’ Reliability: We ran-
domly divided the dataset into 5 parts and conducted five-
fold cross-validation experiments on the YOLOv11 model.
The experimental results are demonstrated in Table II. By
sequentially using different sets of 4 parts as the training set
and the remaining part as the validation set, we observed that
the results of the 5-fold cross-validation were quite similar.
The lowest AP50 was 62.3%, and the highest was 64.3%, with
a range of 2.0%. This result indicates that the annotations we
generated are consistent in their distribution.

2) Comparison with Manual Annotations: We randomly
selected a subset of images for manual annotation and then
visually compared them with our automatic annotations. As
presented in Fig. 10, we visualized our generated labels and

TABLE VI
COMPARISON OF THE TRAINING OVER DIFFERENT MODALITIES.

Modality mAP AP50 AP75

RGB 50.3% 68.4% 53.2%
RGB + Seg 55.6% 75.3% 54.1%

RGB + Surface 55.8% 74.3% 54.4%
RGB + Depth 53.5% 73.0% 54.2%

RGB + Seg + Surface + Depth 57.3% 78.2% 58.0%

manually annotated labels separately for comparison. It can be
observed that our annotations are almost identical in position
to the manual labels. Moreover, our annotation algorithm has
some advantages in labeling small objects. We found that when
objects are far away, manual annotations may contain errors
due to the smaller scale of the objects. For example, manual
annotations may not be as closely aligned with the edges
of the objects as our generated annotations. It will introduce
more foreground information, which could impact the model’s
accuracy.

C. Evaluation on Object Detection
In this section, we selected several mainstream detectors

and conducted experiments on object detection tasks at coarse-
grained and fine-grained labels and multi-modal object detec-
tion tasks. Then we conducted analysis based on the model
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TABLE VII
CROSS-MODAL RETRIEVAL PERFORMANCE ON UEMM-AIR.

Method publication Image Backbone Text Backbone
Image To Text Text To Image

Mean Recall
R@1 R@5 R@10 MR R@1 R@5 R@10 MR

CLIP [27] ICML2021

ResNet50

Transformer

6.79 27.38 44.05 26.07 4.57 19.33 32.41 18.77 22.42
ViT-B-16 8.67 30.77 47.35 28.93 5.96 22.48 35.71 21.38 25.15
ViT-B-32 12.80 43.51 62.72 39.59 8.59 31.09 47.82 29.17 34.38
ViT-L-14 12.81 44.62 61.99 39.32 8.68 30.68 46.69 29.08 34.16

RemoteCLIP [66] TGRS2024
ResNet50

Transformer
7.02 27.34 43.72 26.03 4.56 19.17 32.33 18.69 22.36

ViT-B-32 12.24 41.58 60.77 38.19 8.39 30.84 47.52 28.92 33.56
ViT-L-14 12.31 41.21 60.84 38.12 8.36 30.91 46.63 28.46 33.29

TABLE VIII
REFERRING IMAGE SEGMENTATION PERFORMANCE ON UEMM-AIR.

Methods Publication Image Backbone Text Backbone Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 oIoU mIoU
LAVT [73] CVPR22 Swin-B BERT 53.17% 42.42% 35.47% 23.69% 8.03% 63.72% 51.09%

RMSIN [74] CVPR24 Swin-B BERT 57.40% 49.20% 38.80% 25.40% 8.60% 65.82% 51.97%
RefSegformer [75] IEEE TIP24 Swin-B BERT 55.28% 48.55% 38.01% 26.04% 8.62% 64.99% 51.23%

performance and experimental results. These experimental
results will serve as the baseline results of our dataset for
future research.

1) Transferability Verification: To demonstrate the advan-
tage of our UEMM-Air on model transferability, We pre-
trained two detectors utilizing SynDrone and UEMM-Air,
respectively. Then we subsequently fine-tuned the models on
the VisDrone and UAVDT datasets. The experimental results
are presented in Table III. While the number of images is
smaller than SynDrone (20k & 60k), the model pre-trained on
the UEMM-Air dataset demonstrates stronger generalization
performance on real-world scenario data. For example, after
obtaining pre-trained weights on UEMM-Air and SynDrone
datasets, we fine-tuned the YOLOv8 model on the VisDrone
dataset. The model pre-trained on UEMM-Air demonstrated a
2.7% improvement in AP50 and a 1.7% improvement in AP75.
This might be attributed to the provision of more accurate
annotations, more categories, and more diverse scenarios in
UEMM-Air for the model pre-training process.

2) General Object Detection: We trained several state-
of-the-art detection frameworks, including YOLOv11 [67],
RT-DETR [47], and D-FINE [69], utilizing our UEMM-Air.
Experimental outcomes are presented in Table IV. In terms
of detection accuracy, the D-FINE-x model achieved the
best performance with a mean Average Precision (mAP) of
75.8%. Similar to performances on other UAV-OD datasets,
the detection accuracy for small objects was 59.5%, which is
significantly lower compared to 97.5% for large objects. This
indicates that our dataset poses significant challenges for small
object detection, providing valuable insights for researchers
aiming to tackle the difficulties associated with small object
detection. Additionally, considering the real-time requirements
of UAVs, we also tested the inference time metrics. The
YOLOv11-n, as a lightweight model, achieved 263.2 FPS on
an RTX 3090 GPU, with only 2.6M parameters.

3) Multi-modal Object Detection: In Table VI, we con-
ducted mid-level fusion experiments for multi-modal object
detection with RGB modality and the other three modali-

ties. The model fusion of RGB with segmentation modality
achieved the best performance on AP50, surpassing the base-
line model (RGB only) by 6.9%. The fusion of RGB with
surface normal modality achieved the best performance on
AP75, surpassing the baseline model by 1.2%. However, fusion
with depth modalities resulted in the lowest performance. This
could be due to the distinct features of object positions in seg-
mentation modality and the detailed texture features in surface
normal, both containing more effective information compared
to depth. We also combined 4 modalities in our experiments,
achieving a mAP of 57.3%, which is an improvement of 7%
compared to utilizing the RGB modality alone.

D. Evaluation on Instance Segmentation

We selected the YOLOv11 framework to conduct instance
segmentation experiments, as shown in Table V. It provides
benchmark results for our dataset. As the largest scale model,
YOLOv11-x achieved the best accuracy, with a mAP of
39.1%, AP50 of 69.5%, and AP75 of 38.9%. Compared to
object detection, instance segmentation is a more challenging
dense prediction task, resulting in a relatively lower mAP .

E. Evaluation on Image-Text Contrastive Learning

Table VII presents the performance of CLIP and Remote-
CLIP in image-text retrieval on our dataset. We report the
retrieval recall of top-1 (R@1), top-5 (R@5), top-10 (R@10),
and the mean recall of these values. From Table VII, it can
be observed that the original OpenAI CLIP performs better,
achieving the highest Mean Recall of 34.38. The versions
using ViT-B-32 and ViT-L-14 as visual backbones perform
similarly across several metrics, but ViT-B-32 demonstrates
superior average performance in both retrieval tasks. Addition-
ally, it is noteworthy that RemoteCLIP, as the CLIP model
for remote sensing, performs worse than the original CLIP.
This may be due to the reduced generalization capability of
RemoteCLIP after fine-tuning on remote sensing satellite data.
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F. Evaluation on Referring Segmentation

We conducted experiments with three state-of-the-art re-
ferring image segmentation models on our UEMM-Air, with
the results summarized in Table VIII. The results indicate
that RMSIN exhibits the best performance on both the mIoU
and oIoU average performance metrics. It can be attributed
to RMSIN’s architecture is specifically designed for aerial
perspectives, making it more conducive to feature learning
from a UAV’s viewpoint. Additionally, RMSIN’s metrics at
Pr@0.8 and Pr@0.9 are slightly lower than those of RefSeg-
former, aligning with the performance differences reported in
the original paper for the two models. The phenomenon indi-
rectly validates the high accuracy of the annotations generated
automatically in our dataset.

V. CONCLUSION

In this paper, we release a synthetic UAV-based envi-
ronmental perception dataset, named UEMM-Air. Our work
achieves three main breakthroughs: Firstly, to the best of our
knowledge, UEMM-Air is the largest in terms of data scale,
featuring the most paired modalities and the highest number
of task types. Secondly, we design a new automatic annotation
method, enhancing the accuracy of annotations by employing
segmentation and depth images. Then, we generate a large
number of text descriptions utilizing the annotations, further
enriching our dataset with text modality. Finally, we provide
benchmark results across multiple tasks, thereby expanding
the breadth of tasks in the field of UAV-based environmental
perception. We will continue to build new simulated scenarios
in the future to expand the scale and number of modalities in
our dataset, supporting research on UAV-based multi-modal
perception tasks.
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